
 1

Run-time Modification of the Class Hierarchy
in a Live Java Development Environment

Joel R. Brandt and Kenneth J. Goldman
Department of Computer Science and Engineering

Washington University in St. Louis
{jbrandt, kjg}@wustl.edu

Abstract

Class hierarchy design is central to object-oriented
software development. However, it is sometimes
difficult for developers to anticipate all the
implications of a design until implementation is
underway. To support experimentation with different
designs, we extend prior work on live development
environments to allow run-time modification of the
class hierarchy. The result is a more fluid object-
oriented development process, in which immediate
feedback from the executing program can be used to
guide hierarchy design.

This paper presents a framework and developer
support for run-time modification of class inheritance
relations in JPie, a live visual programming
environment for Java. Most notably, the framework
supports class reloading without modification of the
Java Virtual Machine.

1. Introduction

JPie is a tightly integrated programming
environment supporting live development of Java
applications through direct manipulation of graphical
representations of programming abstractions [8,9,10].
JPie permits class modifications in running
applications, with changes affecting existing instances
of those classes. This run-time modification eliminates
the edit-compile-test cycle.

Enabling run-time modification of class hierarchy
relations is important for two reasons. First, it rounds
out the set of run-time changes allowed in JPie, which
prior to this work consisted only of fine-grain
modifications of classes, such as creation, deletion, and
modification of fields, methods, and method bodies.
Second, run-time modification of the class hierarchy
provides a useful tool in computer science education.
Allowing run-time modification of the hierarchy lets

beginning programmers experiment with system design
changes easily, illuminating the full power of object-
oriented programming.

The majority of fine-grain run-time changes (addition,
modification, and removal of fields, methods, and code)
are handled through a pairing of Java’s reflection
mechanism and JPie’s dynamic classes [11]. However, the
prior work on dynamic classes in JPie assumes that the
parent and implemented interfaces of a dynamic class do
not change over time. This paper removes that assumption
to permit coarse-grain changes as well: the class hierarchy
can be modified while the program is running.

For interoperability with standard Java classes,
JPie’s dynamic classes use a compiled proxy class,
which we call a compiled peer. If we allow ancestors
or implemented interfaces of a dynamic class to
change, then a new compiled peer class must be created
and loaded. In typical Java applications, the system
class loader built into the Java Virtual Machine (JVM)
handles the loading of classes. However, the system
class loader does not provide a way to unload or reload
classes, a necessary feature to support changes to the
class hierarchy. In order for JPie to allow run-time
modification of the class hierarchy, a class loader
which allows the reloading of classes is necessary.

The remainder of the paper is organized as follows.
We begin with background on JPie, a discussion of
related work, and a brief introduction to Java’s class
loading system. In Section 2 we present a dynamic
class loader which provides the abstraction of class
reloading. This class loader is implemented completely
in Java, and does not require modification of the JVM.
Section 3 examines how modifications to the class
hierarchy can impact a live system, and discusses how
these issues are dealt with in JPie. In Section 4, we
present a Graphical User Interface (GUI) for
manipulating class hierarchy relations. We conclude,
in Sections 5 and 6, with a look at applications for the

 2

dynamic class loader outside of JPie, and a discussion
of our plan for future work.

1.1. Background on JPie

JPie is a live visual programming environment for
the Java Programming Language [8,9,10]. With JPie,
programmers are able to modify their application while
it is running. Possible modifications include the
creation of classes, and the addition, removal, and
modification of all fields, methods, and code. At any
time, these classes can be exported as Java source code
or Java bytecode, and used outside of JPie.

JPie permits fine-grain modifications of classes
through a visual interface which eliminates the
possibility of syntactic errors. In addition to standard
Java support for graphical user interfaces and threads,
JPie provides shortcuts that streamline the creation of
views, events, and behaviors. Views provide a visual
representation of object instances, events extend views
to provide basic event handling, and behaviors provide
simple threading capabilities. A more thorough
examination of JPie can be found elsewhere [8,9,10].

JPie supports live development through the use of
dynamic classes [11]. Dynamic classes are
interoperable with compiled classes, including run-time
method overriding and polymorphism. Dynamic
classes consist of two main parts, the dynamic portion,
which can be modified at run-time, and the compiled
peer, which enables interoperability with compiled
classes. The dynamic portion of a dynamic class
contains the user’s code (fields and methods). When a
user adds, modifies, or removes code, the dynamic
portion of the dynamic class is updated.

The compiled peer is an automatically generated
class that expresses the portion of a dynamic class’s
interface dictated by its class hierarchy relationships to
compiled classes. For example, suppose Parent is a
compiled class and Child is a dynamic class which
extends Parent. Then the compiled peer of Child
would contain an implementation of each method
inherited from Parent (and its ancestors). These
methods either pass their calls on to the dynamic
portion of Child (if an overriding method has been
defined by the user) or make the appropriate super
calls. For interoperability with compiled classes, each
instance of a dynamic class presents itself as an
instance of its compiled peer. Compiled classes, then,
can call methods polymorphically on instances of the
compiled peer, which dispatch dynamically overridden
methods by proxy into the dynamic portion of the
dynamic class. Through this mechanism, live

development is accomplished without modification of
the language or the JVM.

A dynamic class’s compiled peer works well for
interoperability, provided that all changes to a dynamic
class are fine-grained—adding and removing methods
or fields, and modifying code. However, if the
developer changes the position of a dynamic class in
the class hierarchy, this may change its set of inherited
members and therefore require that the dynamic class’s
compiled peer be regenerated and reloaded. This paper
addresses how to reloaded classes without modifying
the JVM and how to cope with existing instances of
dynamic classes whose ancestors have changed.

1.2. Related Work

A great deal of work has been done on providing
mechanisms for the reloading or replacement of code in
numerous operating systems and run-time
environments [1,2,3,5,7,14,16]. Such mechanisms are
desired so that large or mission-critical systems can be
updated without downtime.

However, none of these solutions meets the unique
needs of a live development environment. The
majority of systems address the reliability and
robustness requirements imposed by live, deployed
systems [1,13]. As a result, these systems require the
programmer to provide explicit instructions on how
current data should be migrated. The effort required to
create migration instructions is justified only for live
modification of systems already deployed.

Because JPie is a development environment, rather
than a production run-time environment, forcing the
developer to specify the migration process for drastic
design changes would overshadow any advantages
gained from live modification. (The developer would
sooner restart the application than have to carefully
specify how to upgrade old instances.) Therefore, we
seek a fluid development environment that supports
maximally live type-safe class hierarchy modification to
the extent that there is no extra burden on the developer.

Other solutions to the problem of code replacement
involve modifying the language [6] or the execution
environment [12,15]. While it would be possible to
create a modified JVM or introduce modifications to
the Java language, such approaches are undesirable for
JPie. Key goals in the development of JPie have been
practicality through the use of the Java language and
portability through the use of the standard JVM.

An alternate approach to class reloading without
modification of the JVM exists [17]. This approach
suggests placing new versions of classes in an alternate
package to enable reloading. Not only does this
introduce a host of protection issues, it also places a

 3

burden on the file system. Additionally, this approach
provides no compatibility between old and new
versions of classes. Because we are able to utilize the
additional level of indirection provided by dynamic
classes, our approach is simpler, more compatible, and
more extensible than the package-based approach.

1.3. Java’s Class Loaders

The Java Virtual Machine (JVM) provides a system
class loader. This class loader is responsible for
locating and loading classes explicitly referred to by
code executing inside the JVM, as well as those
requested by the Class.forName method, which
allows a class to be loaded by providing its fully-
qualified name.

The system class loader will only load a class once,
and provides no mechanism for unloading a class. In
addition, the system class loader will only search for
classes inside the JVM’s classpath, and the location of
a class’s bytecode cannot be explicitly specified.
Therefore, the system class loader will simply load
bytecode from the first match found.

The Java framework also provides a
ClassLoader class. When instances of this class are
used for loading classes, the programmer is afforded a
little more control. Each ClassLoader instance has
a parent ClassLoader (if none is specified at time of
instantiation, the system class loader is used as the
parent). An instance may load any class, provided a
class with the same fully qualified name has not been
loaded by that instance or any ancestor instance.
Additionally, a ClassLoader instance may load a
class directly from a byte stream, allowing loading of
specific files.

The JVM requires that all other classes referred to
by a class be loaded by its class loader or one of its
class loader’s ancestors. (Because the system class
loader is an ancestor of all class loaders, it is used to
load all referenced classes which are not otherwise
explicitly loaded.) Each object has a getClass
method which returns a Class instance representing
the initial object’s class. Each Class object has a
getClassLoader method. Therefore, if the same
class is loaded by two different class loaders, they will
be represented by unique Class instances, and will be
unique types.

2. Dynamic Class Loader

We present a dynamic class loader which is at the heart
of our framework allowing modification of the class

hierarchy. This class loader allows reloading of compiled
classes into the JVM through a tree-based technique.

In this section, we first consider the design of the
dynamic class loader. Then, we discuss how it is used
through an example. Finally, we explain how class
versioning automates class reloading in our system.

2.1. Design

The dynamic class loader consists of two classes,
DynamicLoader and PeerLoader. The
DynamicLoader class presents a static interface for
loading and reloading classes. The classes are actually
loaded by instances of the PeerLoader class.

 The PeerLoader class is a relatively
straightforward extension of Java’s built-in
ClassLoader class. In this design, each
PeerLoader instance loads only one class (or, more
specifically, one version of one class). Instances of this
class are responsible for retrieving bytecode data from
a specified file, and loading that bytecode as a
specified class name. Additionally, PeerLoader
instances keep track of version information, as
discussed in Section 2.3.

The DynamicLoader class manages all of the
PeerLoader instances and the classes they load.
PeerLoader instances are constructed in a hierarchy
tree mirroring the current class hierarchy. At the top of
the PeerLoader tree is the system class loader. All
regular Java classes are loaded by this class loader.
(Because these classes cannot be modified, they will
not need to be reloaded within JPie.) Directly below
the system class loader is a special root PeerLoader.
This PeerLoader is not responsible for loading any
classes. Instead, it serves as a parent loader for all
PeerLoaders which load peer classes with non-
dynamic parents. Additionally, the root PeerLoader
is responsible for creating all packages.

Let C be a class, and let parent(C) and loader(C)
represent C’s parent class, and C’s loader, respectively.
In order to load C, parent(C) is first determined. (This
may be accomplished without first loading C by
consulting the dynamic class object for C.) Then, C is
loaded using a new PeerLoader instance whose
parent loader is loader(parent(C)). Finally, the newly
loaded class C is then mapped to its fully-qualified
name and cached in the DynamicLoader. When
additional requests for this class are made to the
DynamicLoader, the cached class is returned.

Reloading a class C is exactly the same as loading the
class initially. First, a new PeerLoader instance is
created whose parent loader is loader(parent(C)). This
new loader is then used to load the new version of C.

 4

Additionally, the cache in the DynamicLoader is
updated, so the new version will be returned with each
additional request.

An example of the loading and reloading process is
given below. We defer discussion of how JPie initiates
the reloading of a class to Section 2.3.

2.2. An Example

Suppose the user is designing a process control system
which consists of sensors, actuators and control units.
Figure 1 presents two possible class hierarchy design
choices. Further suppose that the user initially chooses
Configuration 1, and begins implementation. Part way
through implementation, however, the user decides that
Configuration 2 will provide substantial benefits.

Figure 1. Two possible configurations of a class
hierarchy. Compiled classes are shown in grey,
dynamic classes are shown in white.

We begin by considering how the classes of
Configuration 1 are initially loaded. In JPie, only peer
classes of dynamic classes will potentially be reloaded.
So, all regular compiled classes (here, Object and
Thread, shown in gray) are loaded by the system
class loader.

As discussed above, all compiled peers of dynamic
classes are loaded by a PeerLoader instance, and
each PeerLoader instance loads only one class (or
more specifically, only one version of one class). Each
time a load occurs, a new PeerLoader instance is
created. Note that parent(loader(C)) =
loader(parent(C)) for all dynamic classes C where
parent(C) is a dynamic class. If parent(C) is not a
dynamic class (and thus not loaded by a
PeerLoader), a special root PeerLoader is used
as the parent. Figure 2 shows the PeerLoader tree
configuration after loading Configuration 1.

Figure 2. The PeerLoader tree configuration
after loading Configuration 1.

When the user switches to Configuration 2, only
classes with modified ancestors must be reloaded
according to the process described above. In this
example, this includes all dynamic classes shown. The
reloading must occur down the hierarchy tree. For
example, the compiled peer of the Sensor class must
be reloaded before the compiled peer of the
Actuator class. This is necessary to ensure that
loader(parent(C)) = parent(loader(C)) for all dynamic
classes C. If a class were reloaded before its parent,
the JVM would observe that the new parent was not yet
loaded, and would load the new parent into the system
class loader. As a result, the parent could not be
reloaded again.

Our loader tree, with one class loader per class,
ensures that each time a class C is reloaded we can
place its loader at the appropriate place in the tree so
that it sees the most recent versions of all the other
classes in C’s ancestry. Upon transitioning to
Configuration 2, new PeerLoaders are instantiated
to load the compiled peers of the Sensor,
Actuator, and ControlUnit classes. Figure 3
shows the new configuration of the PeerLoader tree.
After each class is loaded, the new compiled peer
classes are placed in the DynamicLoader’s cache.
This completes the reloading process, and all new
instances will conform to the user’s design change.
Note that the PeerLoaders which loaded the initial
versions of these compiled peers still exist after the
classes are reloaded. Thus, old instances can still
access the bytecode from the old versions. Section 3
discusses the issues which arise when multiple versions
of a class coexist in the system.

System Cass Loader
Object, Thread

PeerLoaderroot

Creates Packages

PeerLoader1

ControlUnit

PeerLoader2
Sensor

PeerLoader3

Actuator

Configuration 1

Object

Thread ControlUnit

Sensor Actuator

Configuration 2

Object

Thread

ControlUnit

Sensor

Actuator

 5

Figure 3. Changes to the PeerLoader tree
configuration after switching to Configuration 2.

2.3. Versioning and Automatic Reloading

Within JPie, each dynamic class has a version.
Whenever a course-grain change occurs, such as class
hierarchy modification, the version numbers of affected
dynamic classes are incremented.

When a dynamic class’s compiled peer is loaded by
a PeerLoader, the current version of the dynamic
class is recorded by the PeerLoader. When JPie
requests a peer class from the DynamicLoader, the
version of the compiled peer most recently loaded is
compared with the current version of the associated
dynamic class. If the version numbers match, the
DynamicLoader simply returns the cached compiled
peer class.

However, modifications to the class hierarchy
necessitate the reloading of affected classes’ compiled
peers. To initiate lazy reloading, the hierarchy
modification process will increment the version numbers
of affected classes. The next time JPie asks the dynamic
class loader for a modified class’s compiled peer class,
the version discrepancy will be observed. The
DynamicLoader will then trace the version
discrepancies up the class hierarchy until the root
PeerLoader is reached. The compiled peer with a
version discrepancy that is highest in the tree is reloaded
first, and then all compiled peers below it are reloaded
sequentially by a breadth-first traversal of the tree. This
both automates the reloading process and guarantees that
all classes are loaded in the appropriate order.

3. Effects of Class Hierarchy Modification
in a Live System

Modification to the class hierarchy in a live system
has the potential to cause a wide variety of problems,
from missing methods to the unexpected execution of
old code. These problems may arise in any class which

has its ancestry modified. In this section, we first
classify the problems which can arise from hierarchy
modification. We then discuss how these problems are
handled in JPie.

3.1. A Classification of Potential Problems

There are three main effects of hierarchy
modification that can lead to problems: the removal of
inherited members (fields and methods) from a class,
the addition of inherited members to a class, and the
difference in types between old and new instances of
the class. Recall that each dynamic class has a
compiled peer, and that each instance of a dynamic
class has two parts: the dynamic instance (which holds
the values of the dynamically declared fields) and the
compiled peer instance (which holds the values of the
fields inherited from compiled ancestors and on which
inherited compiled methods are executed). Also recall
that the compiled peer’s type represents the position of
the dynamic class in the class hierarchy. When
compiled code holds a reference to an instance of a
dynamic class, it does so by holding a reference the
compiled peer instance. However, when the position of
a dynamic class in the class hierarchy changes, the
compiled peer of that class must change accordingly.
When this happens, we say that the previously existing
instances are abandoned. In other words, the type of
the compiled peer instance is no longer the compiled
peer class of its corresponding dynamic class.

Suppose that an ancestor of a dynamic class C
changes from A to A′. (That is, either C’s parent
changes from A to A′, or C has some ancestor D whose
parent changes from A to A′.) We have three cases: A′
is a descendent of A, A′ is an ancestor of A, or A′ is
unrelated to A.

When A′ is a descendent of A, inherited members
will only be added to C. When A′ is an ancestor of A,
inherited members will only be removed from C.
When A′ is unrelated to A, inherited members will be
both added to and removed from C. In all three
cases, the old and new types of C will differ. So, in
all three cases, the existing instances of C will
become abandoned.

The distance from C to the closest common ancestor
of A and A′ gives an indication of the amount of change
C undergoes in a hierarchy modification. In the first
two cases, this will be the distance to A and A′
respectively. However, in the third case (A and A′
unrelated) the closest common ancestor will be further
away than both A and A′. Loosely speaking, the
number of potential problems increases as the distance
to the closest common ancestor becomes greater, since

PeerLoader1

ControlUnit

System Cass Loader
Object, Thread

PeerLoaderroot

Creates Packages

PeerLoader5
Sensor

PeerLoader4

ControlUnit

PeerLoader2

Sensor
PeerLoader3

Actuator
PeerLoader6
Actuator

 6

the number of classes from which members are
inherited and disinherited increases.

3.2. Handling Abandoned Instances in JPie

The JPie philosophy is to aggressively support run-
time program modification, even when such changes
affect existing instances. In keeping with this
philosophy, our goal is to allow abandoned instances to
continue to participate in the execution, provided that
the fact that they are abandoned cannot be observed.
Recall that within JPie, dynamic classes may extend
either dynamic or compiled classes, but compiled
classes cannot extend dynamic classes. As a result,
class hierarchies have a distinct boundary between
compiled classes and dynamic classes. This boundary
affords us a significant advantage when handling
hierarchy modification problems.

We break up the possible hierarchy modifications
into two categories: dynamic ancestor changes, and
compiled ancestor changes. In the example given in
Figure 1, the Sensor and Actuator classes undergo
only dynamic ancestor changes (the only compiled
ancestor of these classes, Object, remains the same in
both configurations). In contrast, the ControlUnit
undergoes only a compiled ancestor change, adding
Thread (a compiled class) to its ancestry.

While we keep these changes isolated in our
example for expository purposes, a dynamic class may
undergo both types of changes in a single hierarchy
modification. However, any hierarchy modification
consisting of both dynamic and compiled ancestor
changes can be decomposed into a series of hierarchy
modifications, each containing only one type of
ancestor change.

The next two sections discuss how the problems
presented in Section 3.1 are handled for each type of
ancestor change.

3.3. Dynamic Ancestor Changes

Dynamic ancestor changes occur when a dynamic
class loses and/or gains new dynamic ancestors. In
practice, most design changes occur in user-defined
classes, rather than in the library classes that support
them. As a result, the majority of ancestor changes are
of this type. Due to the level of indirection created by
the dynamic class system, problems arising from
dynamic ancestor changes are easier to handle than
those arising from compiled ancestor changes.

All inherited members that are added or removed
from a dynamic class as a result of a dynamic ancestor
change will be dynamic members. That is, all modified
members will be declared within some dynamic class.

These modifications, then, are exactly the same fine-
grained modifications already supported by dynamic
classes [11] in JPie, and will be reflected in both
abandoned and new instances. (In JPie, members are
used by a reference to the declaration object, not by
name matching, so the overriding of methods is not
based on the lexical signature of the methods, and
fields are not masked by name. Therefore, there is no
risk that a newly acquired dynamic member will
accidentally override or mask a member declared by a
compiled ancestor.)

The compiled peer types of new and abandoned
instances will differ as a result of dynamic ancestor
changes. However, no problems arise because of this.
Because only the dynamic ancestors of new and
abandoned compiled peer instances differ, all compiled
peer instances will have identical compiled ancestors.
References in complied classes can only have compiled
types. As a result, compiled classes will not have direct
access to the dynamic members which were added or
removed. All members directly accessible by compiled
class instances will be expressed through both the new
and abandoned compiled peer instances. Furthermore,
code contained in compiled classes can only perform
type casts to other compiled types. Due to their identical
compiled ancestries, both new and abandoned compiled
peer instances may be cast identically.

Unlike the type of the compiled peer instances,
which are determined and fixed upon creation, the
dynamic class system allows the dynamic instance’s
type to change. Therefore, abandoned instances of a
modified dynamic class will automatically express the
new type to all instances of dynamic classes.

While dynamic ancestor changes may introduce
problems, these problems are dealt with elegantly by
the system. As a result, both abandoned and new
instances behave identically, and are indistinguishable
to the user.

3.4. Compiled Ancestor Changes

Compiled ancestor changes occur when a dynamic
class loses and/or gains new compiled ancestors.
These changes lead to the addition and removal of
inherited compiled members (members declared in
compiled classes). In addition, abandoned compiled
peer instances will express the wrong type to other
compiled instances, a problem that cannot be solved by
the ability to modify the type of the dynamic instance.

Suppose class C undergoes a compiled ancestor
change, and the user’s system contains both abandoned
and new instances of C. Code that interacts with these
instances may not function properly—type casting may
fail, and members may be unavailable. These failures

 7

will lead to run-time exceptions, which will be caught
by the JPie debugger. However, depending on whether
the instance is new or abandoned, these exceptions will
mean very different things. We consider each of these
cases in turn.

A failure occurring in a new instance is caused by
old code that attempts to access a member of C which
has been removed (or that attempts to perform a cast to
the abandoned C type). This code is incorrect (out-of-
date), and must be modified. The error message JPie
provides for the offending code will convey the
appropriate message to the user, and any attempt to
execute the code will pause the execution at that point
in the debugger so that the user can correct it.

A failure occurring in an abandoned instance is
caused by code that attempts to access a new member
of C (or that attempts to cast the abandoned instance to
the new type). If we simply allow execution to
proceed, the exception thrown in this case could be
misleading. The code may in fact be correct, and fail
only because it was executed using an abandoned
instance. Our goal is to allow the use of abandoned
instances as long as possible, but to prevent execution
within an abandoned instance that would expose its
type incompatibility. To this end, when a class
undergoes a compiled ancestor change, its existing
instances are marked as stale. Code is allowed to
interact with this class exactly as before. However, any
exceptions which occur as a result of stale instances are
caught before reaching the debugger, and rethrown as
an AbandonedInstanceExcepetion. This
exception reveals the true cause of the error to the
programmer, and allows the programmer to abort
offending threads and resume testing and development
with the remaining instances.

Returning to the example shown in Figure 1, we see
that new and old instances of Sensor and Actuator
will function identically, because these classes have
only undergone dynamic ancestor changes. However,
ControlUnit has undergone a compiled ancestor
change. Any existing ControlUnit instances may
lead to abandoned instance failures.

In practice, we expect that most hierarchy
modifications in a live development environment will
occur within the dynamic portion of the hierarchy, and
therefore will not result in abandoned instance failures.
Furthermore, we expect that programmers would
naturally restart the execution after drastic hierarchy
changes that could result in such failures. In cases
where the programmer does not anticipate abandoned
instance failures, the run-time system will call attention
to such failures through the exception mechanism, and

provide the opportunity to continue executing with the
remaining instances.

One might contemplate entirely eliminating
abandoned instance failures by adding support for
object migration. However, besides placing an
unnecessary burden on the developer, comprehensive
migration support would require modification of the
JVM so that references could be replaced globally [15].
Execution within the standard JVM has been a key goal
in the development process of JPie as a whole, and is a
constraint in the design of many systems. As a result,
the work presented above represents the limit of
abandoned instance interoperability that can be
achieved under this constraint.

4. Graphical Manipulation of the Hierarchy

JPie provides direct manipulation of graphical
representations of programming objects. In order to
extend this paradigm, a graphical user interface (GUI)
for hierarchy modification was developed. We briefly
present the GUI design and then discuss how the GUI
interacts with our class reloading framework to ensure
that reloading occurs correctly and efficiently.

4.1. Design of the Class Hierarchy Editor

Within JPie, a programmer’s modifications to the
system are typically reflected immediately. However,
an “atomic” hierarchy modification often consists of
several discrete class ancestry changes. For instance,
in the example above, each dynamic class undergoes a
parent change. However, the programmer intends the
group of modifications to represent one atomic change
to the system.

To meet this need, modifications to the class
hierarchy must first be specified within the editor, and
then committed to the system. The programmer may
specify any number of class ancestry changes without
affecting the system. Once specification is complete,
the programmer commits the changes. The system then
determines the most efficient order to update and
reload affected classes.

Besides meeting atomicity requirements, the
specification and committal process provides several
benefits. Foremost, it allows the programmer to
experiment with the design without introducing new
abandoned instances at the specification of each change.
If the programmer chooses not to use all or part of a
hierarchy modification before committal, existing
instances of the involved classes are not abandoned.
Additionally, the committal process allows the system to
determine the most efficient way to modify the system so
that the user’s hierarchy modifications are reflected. A

 8

user’s thought process may not follow the top-down
modification necessary to update the system efficiently.
Updating the system after each modification made by the
user could result in the wasted creation of many
intermediate classes. (This efficiency concern is
discussed further in Section 4.3.)

The committal process opens the door for one
potential problem, however. Due to Java language
constraints, some modifications to the hierarchy are not
allowed. For example, final classes cannot be
extended. Additionally, the interfaces and ancestors of
a class must not have methods with conflicting
signatures. (Conflicting signatures arise when two or
more methods have identical names and parameter
types but different return types, or when the exceptions
thrown by a method are incompatible with those
thrown by the method it will potentially override.)
Without some analysis of a programmer’s
modifications during the specification process, he or
she could proceed down a design path which is not
allowed. Presenting the user with the problems during
committal would both confuse the user and go against
the grain of immediate feedback central to a live
development system.

In our system, this problem is solved through the
use of a signature builder. When the user attempts to
specify a modification to the hierarchy, the signature
builder constructs signatures of each affected class to
determine if the modification would violate any
language constraints. If such a violation would occur,
the signature builder throws an exception which details
the type of violation. The GUI does not allow
specification of the modification, and provides
immediate feedback as to the reason.

4.2. Use of the Class Hierarchy Editor

The class hierarchy editor initially displays no
classes. The programmer drags the classes he or she
wishes to work with from a class listing into the class
hierarchy editor. The representation of classes is
shown in Figure 4. Both compiled and dynamic classes
may be placed in the hierarchy editor, but
modifications may only be made to dynamic classes.
Classes which are not involved in a modification may
also be removed from view at any time.

In the class hierarchy editor, modifications are made
through a set of drag-and-drop actions, called gestures.
While a complete discussion of the supported gestures is
beyond the scope of this paper, an example is shown in
Figure 4. There, the line connecting a child to its parent
class is being dragged to a new parent, specifying an
inheritance change. Additional gestures exist for class
creation, class extension, and interface implementation.

Figure 4. A view of the class hierarchy editor.
Here the parent of the Sensor class is being
modified.

When a modification would violate Java language
semantics (as discussed in Section 4.1), gestures for
this modification are disallowed. When the user
attempts a disallowed gesture, a visual cue (unique to
the gesture) and a message in the editor’s status bar
explain the reason the gesture is not allowed.

When the new design is complete, the
programmer selects an option to initiate the commit
process. Alternatively, the user may chose to save
the current configuration for later work, or discard
the changes entirely.

4.3. The Commit Process

The committal process is intended to be an atomic
change to the system. However, each affected dynamic
class must be modified and its compiled peer reloaded
sequentially. To guarantee atomicity, then, execution of
dynamic code (and thus, creation of dynamic instances)
must be halted during the entire committal process.

The signature builder guarantees that the user’s
modifications represent a valid Java hierarchy at any
point in the editing process. Therefore, the committal
process must only be concerned with how to perform
the modifications.

A Java class file contains information not only about
the class itself, but also about the class’s parent.
Information about a class’s additional ancestors is
determined when the class is loaded. Therefore,
dynamic classes that undergo any type of ancestor
change must be have their compiled peers reloaded
after a hierarchy modification, but only dynamic
classes that undergo a parent change must have their
compiled peers recreated and recompiled.

 9

As discussed in Section 2, the order in which classes
are reloaded is important for correctness. The design of
the dynamic class loader enforces this order. While the
order in which new peer classes are created and
compiled is not important for correctness, it is important
for efficiency. Suppose dynamic classes A and B have
both undergone parent changes, and thus their peer
classes must be recreated and recompiled. Further
suppose that B is now the child of A. If B’s compiled
peer is recreated and recompiled before A’s compiled
peer, the resulting class file will contain information
regarding the old version of A. Once A’s new compiled
peer is created and compiled, B’s compiled peer will
have to be created and compiled again. This problem is
solved by recreating and recompiling from the root of the
new hierarchy downward.

The versioning system implemented in the dynamic
class loader (Section 2.3) guarantees that classes will
be reloaded when necessary. As a result, the committal
process does not need to explicitly force the reloading
of affected classes. The committal process, then,
consists of three steps:

1. Determine an efficient committal order.
2. Recreate and recompile peer classes which

have undergone parent changes in the
determined order.

3. Update version numbers of dynamic classes
which have undergone ancestry changes, and
mark existing instances of those classes as
stale.

As stated above, the efficient committal order is
determined by a breadth-first traversal of the new
hierarchy tree. New peer classes are created and
compiled through the same mechanism used to
create the initial peer classes. The final step,
updating version numbers and marking existing
instances as stale, is straightforward and may be
done in any order (since execution of dynamic code
is halted during committal).

5. Further Applications

The pairing of dynamic classes and the dynamic
class loader could be used to provide support for
run-time code modification and updating in any
system. This improves on prior approaches because
it does not require modification of the language or
the JVM. It is also simpler to use and maintain than
alternate approaches.

If modification of the JVM was allowed in a given
application, the use of the dynamic class loader would
be even more versatile. By adding a global reference
replacement mechanism to the JVM, references to old

versions of a class’s instances could be replaced with
pointers to new replacement instances after reloading
and migrating.

6. Future Work

One area of future work is to allow class renaming
and package reassignment in addition to inheritance
changes. Many of the same underlying reloading
techniques will be used to accomplish this.

 Another area of future work involves modifying
JPie so that the application being developed runs in
a separate JVM from JPie itself. This would allow
the programmer’s application to be killed and
restarted without restarting JPie. With this
modification, the programmer would have the
option of restarting the application after drastic
hierarchy modifications, eliminating the possibility
of abandoned instance failures.

7. Conclusion

We have presented a class reloading mechanism
which supports the ability to modify the class hierarchy
in a live development system without modification of
the language or the JVM. Live modification of the
class hierarchy encourages experimentation, creating a
fluid development process lacking the penalties
typically associated with making design changes after
implementation has begun.

We provide a fluid development environment that
supports maximally live type-safe class hierarchy
modification to the extent that there is no extra burden
on the developer. While drastic changes may require a
developer to restart an application, the more frequent
kinds of incremental changes and minor class hierarchy
design changes can proceed during live execution
without the overhead of specifying object migration.

Acknowledgements

We thank the past and present members of the JPie
development team: James Aguilar, Ben Birnbaum, Ben
Brinckerhoff, Vanessa Clark, Melanie Cowan, Matt
Hampton, Dylan Lingelbach, Oren Melzer, Adam Mitz,
Brandon Morgan, Jonathan Nye, Sajeeva Pallemulle,
and Richard Souvenir. Additionally, we thank the
students in CS123 for their feedback on the class
hierarchy GUI. This work was supported in part by the
National Science Foundation under CISE Educational
Innovation Grant 0305954.

 10

References

[1] Miles Barr and Susan Eisenbach. Safe Upgrading
without Restarting. In Proceedings of the International
Conference on Software Maintenance, pages 129–137,
September 2003.
[2] T. Bloom. Dynamic module replacement in a distributed
programming system. Ph.D. dissertation, Massachusetts
Institute of Technology, 1996.
[3] Chandrasekhar Boyapati, Barbara Liskov, Liuba Shrira,
Chuang-Hue Moh, and Steven Richman. Lazy modular
upgrades in persistent object stores. In Proceedings of the
18th Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 403–14, October 2003.
[4] T. M. Breuel. Implementing dynamic language features
in Java using dynamic code generation. In Proceedings 39th
International Conference and Exhibition on Technology of
Object-Oriented Languages and Systems, pages 143–52, July
2001.
[5] Sean Dorward, Ravi Sethi, and Jonathan E. Shopiro.
Adding new code to a running C++ program. In Proceedings
of the Usenix C++ Conference, pages 279–292, April 1990.
[6] Sophia Drossopoulou, Mariangiola Dezani-Ciancaglini,
Ferruccio Damiani, and Paola Giannini. Objects dynamically
changing class. unpublished, August 1999.
[7] Jonathan J. Gibbons and Michael J. Day. Shadows: A
type-safe framework for dynamically extensible objects.
Technical Report TR-94-31, Sun Microsystems, November
1994.
[8] Kenneth J. Goldman. A demonstration of JPie: An
environment for live software construction in Java. In In the

Conference Companion, 18th Conference on Object-
Oriented Programming, Systems, Languages, and
Applications, pages 403–14, October 2003.
[9] Kenneth J. Goldman. A concepts-first introduction to
computer science. In ACM SIGCSE Technical Symposium
on Computer Science Education, pages 432–436, March
2004.
[10] Kenneth J. Goldman. An interactive environment for
beginning Java programmers. Science of Computer
Programming, 53(1):3–24, October 2004.
[11] Kenneth J. Goldman. Live Software Development with
Dynamic Classes. to appear, August 2004.
[12] Stéphane Hillion. DynamicJava.
http://koala.ilog.fr/djava/, 1999.
[13] Gísli Hjálmtýsson and Robert Gray. Dynamic C++
classes–a lightweight mechanism to update code in a running
program. In In proceedings of the USENIX Annual
Technical Conference, pages 65–76, June 1998.
[14] Robert Laddaga and James Veitch. Dynamic object
technology. Communications of the ACM, 40(5):36–38,
March 1997.
[15] S. Malabarba, R. Pandey, J. Gragg, E. Barr, and J. F.
Barnes. Runtime support for type-safe dynamic Java classes.
In ECOOP, pages 337–361, June 2000.
[16] Mark Segal and Ophir Frieder. On-the-fly program
modification: Systems for dynamic updating. IEEE
Software, pages 381–404, March 1983.
[17] Unloading and Reloading Classes. Technical report,
Sun Microsystems, 2003. http://java.sun.com/developer/
JDCTechTips/2003/tt0819.html.

