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Abstract 

Class hierarchy design is central to object-oriented 
software development.  However, it is sometimes 
difficult for developers to anticipate all the 
implications of a design until implementation is 
underway.  To support experimentation with different 
designs, we extend prior work on live development 
environments to allow run-time modification of the 
class hierarchy.  The result is a more fluid object-
oriented development process, in which immediate 
feedback from the executing program can be used to 
guide hierarchy design. 

This paper presents a framework and developer 
support for run-time modification of class inheritance 
relations in JPie, a live visual programming 
environment for Java.  Most notably, the framework 
supports class reloading without modification of the 
Java Virtual Machine.    

1. Introduction 

JPie is a tightly integrated programming 
environment supporting live development of Java 
applications through direct manipulation of graphical 
representations of programming abstractions [8,9,10].  
JPie permits class modifications in running 
applications, with changes affecting existing instances 
of those classes.  This run-time modification eliminates 
the edit-compile-test cycle. 

Enabling run-time modification of class hierarchy 
relations is important for two reasons.  First, it rounds 
out the set of run-time changes allowed in JPie, which 
prior to this work consisted only of fine-grain 
modifications of classes, such as creation, deletion, and 
modification of fields, methods, and method bodies.    
Second, run-time modification of the class hierarchy 
provides a useful tool in computer science education.  
Allowing run-time modification of the hierarchy lets 

beginning programmers experiment with system design 
changes easily, illuminating the full power of object-
oriented programming.   

The majority of fine-grain run-time changes (addition, 
modification, and removal of fields, methods, and code) 
are handled through a pairing of Java’s reflection 
mechanism and JPie’s dynamic classes [11].  However, the 
prior work on dynamic classes in JPie assumes that the 
parent and implemented interfaces of a dynamic class do 
not change over time.  This paper removes that assumption 
to permit coarse-grain changes as well: the class hierarchy 
can be modified while the program is running. 

For interoperability with standard Java classes, 
JPie’s dynamic classes use a compiled proxy class, 
which we call a compiled peer.  If we allow ancestors 
or implemented interfaces of a dynamic class to 
change, then a new compiled peer class must be created 
and loaded.  In typical Java applications, the system 
class loader built into the Java Virtual Machine (JVM) 
handles the loading of classes.  However, the system 
class loader does not provide a way to unload or reload 
classes, a necessary feature to support changes to the 
class hierarchy.  In order for JPie to allow run-time 
modification of the class hierarchy, a class loader 
which allows the reloading of classes is necessary. 

The remainder of the paper is organized as follows.  
We begin with background on JPie, a discussion of 
related work, and a brief introduction to Java’s class 
loading system. In Section 2 we present a dynamic 
class loader which provides the abstraction of class 
reloading.  This class loader is implemented completely 
in Java, and does not require modification of the JVM.  
Section 3 examines how modifications to the class 
hierarchy can impact a live system, and discusses how 
these issues are dealt with in JPie.  In Section 4, we 
present a Graphical User Interface (GUI) for 
manipulating class hierarchy relations.  We conclude, 
in Sections 5 and 6, with a look at applications for the 
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dynamic class loader outside of JPie, and a discussion 
of our plan for future work.   

1.1. Background on JPie 

JPie is a live visual programming environment for 
the Java Programming Language [8,9,10].  With JPie, 
programmers are able to modify their application while 
it is running.  Possible modifications include the 
creation of classes, and the addition, removal, and 
modification of all fields, methods, and code.  At any 
time, these classes can be exported as Java source code 
or Java bytecode, and used outside of JPie. 

JPie permits fine-grain modifications of classes 
through a visual interface which eliminates the 
possibility of syntactic errors.  In addition to standard 
Java support for graphical user interfaces and threads, 
JPie provides shortcuts that streamline the creation of 
views, events, and behaviors.  Views provide a visual 
representation of object instances, events extend views 
to provide basic event handling, and  behaviors provide 
simple threading capabilities. A more thorough 
examination of JPie can be found elsewhere [8,9,10]. 

JPie supports live development through the use of 
dynamic classes [11].  Dynamic classes are 
interoperable with compiled classes, including run-time 
method overriding and polymorphism.  Dynamic 
classes consist of two main parts, the dynamic portion, 
which can be modified at run-time, and the compiled 
peer, which enables interoperability with compiled 
classes.  The dynamic portion of a dynamic class 
contains the user’s code (fields and methods).  When a 
user adds, modifies, or removes code, the dynamic 
portion of the dynamic class is updated.   

The compiled peer is an automatically generated 
class that expresses the portion of a dynamic class’s 
interface dictated by its class hierarchy relationships to 
compiled classes. For example, suppose Parent is a 
compiled class and Child is a dynamic class which 
extends Parent.  Then the compiled peer of Child 
would contain an implementation of each method 
inherited from Parent (and its ancestors).  These 
methods either pass their calls on to the dynamic 
portion of Child (if an overriding method has been 
defined by the user) or make the appropriate super 
calls.  For interoperability with compiled classes, each 
instance of a dynamic class presents itself as an 
instance of its compiled peer.  Compiled classes, then, 
can call methods polymorphically on instances of the 
compiled peer, which dispatch dynamically overridden 
methods by proxy into the dynamic portion of the 
dynamic class. Through this mechanism, live 

development is accomplished without modification of 
the language or the JVM. 

A dynamic class’s compiled peer works well for 
interoperability, provided that all changes to a dynamic 
class are fine-grained—adding and removing methods 
or fields, and modifying code.  However, if the 
developer changes the position of a dynamic class in 
the class hierarchy, this may change its set of inherited 
members and therefore require that the dynamic class’s 
compiled peer be regenerated and reloaded.  This paper 
addresses how to reloaded classes without modifying 
the JVM and how to cope with existing instances of 
dynamic classes whose ancestors have changed.  

1.2. Related Work 

A great deal of work has been done on providing 
mechanisms for the reloading or replacement of code in 
numerous operating systems and run-time 
environments [1,2,3,5,7,14,16].  Such mechanisms are 
desired so that large or mission-critical systems can be 
updated without downtime. 

However, none of these solutions meets the unique 
needs of a live development environment.  The 
majority of systems address the reliability and 
robustness requirements imposed by live, deployed 
systems [1,13].  As a result, these systems require the 
programmer to provide explicit instructions on how 
current data should be migrated.  The effort required to 
create migration instructions is justified only for live 
modification of systems already deployed.  

Because JPie is a development environment, rather 
than a production run-time environment, forcing the 
developer to specify the migration process for drastic 
design changes would overshadow any advantages 
gained from live modification.  (The developer would 
sooner restart the application than have to carefully 
specify how to upgrade old instances.)  Therefore, we 
seek a fluid development environment that supports 
maximally live type-safe class hierarchy modification to 
the extent that there is no extra burden on the developer. 

Other solutions to the problem of code replacement 
involve modifying the language [6] or the execution 
environment [12,15].  While it would be possible to 
create a modified JVM or introduce modifications to 
the Java language, such approaches are undesirable for 
JPie.  Key goals in the development of JPie have been 
practicality through the use of the Java language and 
portability through the use of the standard JVM. 

An alternate approach to class reloading without 
modification of the JVM exists [17].  This approach 
suggests placing new versions of classes in an alternate 
package to enable reloading.  Not only does this 
introduce a host of protection issues, it also places a 
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burden on the file system.  Additionally, this approach 
provides no compatibility between old and new 
versions of classes.   Because we are able to utilize the 
additional level of indirection provided by dynamic 
classes, our approach is simpler, more compatible, and 
more extensible than the package-based approach. 

1.3. Java’s Class Loaders 

The Java Virtual Machine (JVM) provides a system 
class loader.  This class loader is responsible for 
locating and loading classes explicitly referred to by 
code executing inside the JVM, as well as those 
requested by the Class.forName method, which 
allows a class to be loaded by providing its fully-
qualified name. 

The system class loader will only load a class once, 
and provides no mechanism for unloading a class.  In 
addition, the system class loader will only search for 
classes inside the JVM’s classpath, and the location of 
a class’s bytecode cannot be explicitly specified.  
Therefore, the system class loader will simply load 
bytecode from the first match found. 

The Java framework also provides a 
ClassLoader class.  When instances of this class are 
used for loading classes, the programmer is afforded a 
little more control.  Each ClassLoader instance has 
a parent ClassLoader (if none is specified at time of 
instantiation, the system class loader is used as the 
parent).  An instance may load any class, provided a 
class with the same fully qualified name has not been 
loaded by that instance or any ancestor instance.  
Additionally, a ClassLoader instance may load a 
class directly from a byte stream, allowing loading of 
specific files. 

The JVM requires that all other classes referred to 
by a class be loaded by its class loader or one of its 
class loader’s ancestors.  (Because the system class 
loader is an ancestor of all class loaders, it is used to 
load all referenced classes which are not otherwise 
explicitly loaded.)  Each object has a getClass 
method which returns a Class instance representing 
the initial object’s class.  Each Class object has a 
getClassLoader method.  Therefore, if the same 
class is loaded by two different class loaders, they will 
be represented by unique Class instances, and will be 
unique types.   

2. Dynamic Class Loader 

We present a dynamic class loader which is at the heart 
of our framework allowing modification of the class 

hierarchy.  This class loader allows reloading of compiled 
classes into the JVM through a tree-based technique.    

In this section, we first consider the design of the 
dynamic class loader.  Then, we discuss how it is used 
through an example.  Finally, we explain how class 
versioning automates class reloading in our system. 

2.1. Design 

The dynamic class loader consists of two classes, 
DynamicLoader and PeerLoader.  The 
DynamicLoader class presents a static interface for 
loading and reloading classes.  The classes are actually 
loaded by instances of the PeerLoader class. 

 The PeerLoader class is a relatively 
straightforward extension of Java’s built-in 
ClassLoader class.  In this design, each 
PeerLoader instance loads only one class (or, more 
specifically, one version of one class).  Instances of this 
class are responsible for retrieving bytecode data from 
a specified file, and loading that bytecode as a 
specified class name.  Additionally, PeerLoader 
instances keep track of version information, as 
discussed in Section 2.3. 

The DynamicLoader class manages all of the 
PeerLoader instances and the classes they load.   
PeerLoader instances are constructed in a hierarchy 
tree mirroring the current class hierarchy.  At the top of 
the PeerLoader tree is the system class loader.  All 
regular Java classes are loaded by this class loader.  
(Because these classes cannot be modified, they will 
not need to be reloaded within JPie.)  Directly below 
the system class loader is a special root PeerLoader.  
This PeerLoader is not responsible for loading any 
classes.  Instead, it serves as a parent loader for all 
PeerLoaders which load peer classes with non-
dynamic parents.  Additionally, the root PeerLoader 
is responsible for creating all packages. 

Let C be a class, and let parent(C) and loader(C) 
represent C’s parent class, and C’s loader, respectively.  
In order to load C, parent(C) is first determined.  (This 
may be accomplished without first loading C by 
consulting the dynamic class object for C.)  Then, C is 
loaded using a new PeerLoader instance whose 
parent loader is loader(parent(C)).  Finally, the newly 
loaded class C is then mapped to its fully-qualified 
name and cached in the DynamicLoader.  When 
additional requests for this class are made to the 
DynamicLoader, the cached class is returned. 

Reloading a class C is exactly the same as loading the 
class initially.  First, a new PeerLoader instance is 
created whose parent loader is loader(parent(C)).  This 
new loader is then used to load the new version of C.  
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Additionally, the cache in the DynamicLoader is 
updated, so the new version will be returned with each 
additional request. 

An example of the loading and reloading process is 
given below.  We defer discussion of how JPie initiates 
the reloading of a class to Section 2.3.  

2.2. An Example 

Suppose the user is designing a process control system 
which consists of sensors, actuators and control units.  
Figure 1 presents two possible class hierarchy design 
choices.  Further suppose that the user initially chooses 
Configuration 1, and begins implementation.  Part way 
through implementation, however, the user decides that 
Configuration 2 will provide substantial benefits.   

 
Figure 1. Two possible configurations of a class 
hierarchy.  Compiled classes are shown in grey, 
dynamic classes are shown in white. 

We begin by considering how the classes of 
Configuration 1 are initially loaded.  In JPie, only peer 
classes of dynamic classes will potentially be reloaded.  
So, all regular compiled classes (here, Object and 
Thread, shown in gray) are loaded by the system 
class loader. 

As discussed above, all compiled peers of dynamic 
classes are loaded by a PeerLoader instance, and 
each PeerLoader instance loads only one class (or 
more specifically, only one version of one class).  Each 
time a load occurs, a new PeerLoader instance is 
created.  Note that parent(loader(C)) = 
loader(parent(C)) for all dynamic classes C where 
parent(C) is a dynamic class.  If parent(C) is not a 
dynamic class (and thus not loaded by a 
PeerLoader), a special root PeerLoader is used 
as the parent.   Figure 2 shows the PeerLoader tree 
configuration after loading Configuration 1. 

 

 
Figure 2. The PeerLoader tree configuration 
after loading Configuration 1. 

When the user switches to Configuration 2, only 
classes with modified ancestors must be reloaded 
according to the process described above.  In this 
example, this includes all dynamic classes shown. The 
reloading must occur down the hierarchy tree.  For 
example, the compiled peer of the Sensor class must 
be reloaded before the compiled peer of the 
Actuator class.  This is necessary to ensure that 
loader(parent(C)) = parent(loader(C)) for all dynamic 
classes C.  If a class were reloaded before its parent, 
the JVM would observe that the new parent was not yet 
loaded, and would load the new parent into the system 
class loader.  As a result, the parent could not be 
reloaded again.   

Our loader tree, with one class loader per class, 
ensures that each time a class C is reloaded we can 
place its loader at the appropriate place in the tree so 
that it sees the most recent versions of all the other 
classes in C’s ancestry.  Upon transitioning to 
Configuration 2, new PeerLoaders are instantiated 
to load the compiled peers of the Sensor, 
Actuator, and ControlUnit classes.  Figure 3 
shows the new configuration of the PeerLoader tree. 
After each class is loaded, the new compiled peer 
classes are placed in the DynamicLoader’s cache.  
This completes the reloading process, and all new 
instances will conform to the user’s design change.  
Note that the PeerLoaders which loaded the initial 
versions of these compiled peers still exist after the 
classes are reloaded.  Thus, old instances can still 
access the bytecode from the old versions.  Section 3 
discusses the issues which arise when multiple versions 
of a class coexist in the system. 

System Cass Loader 
Object, Thread 

PeerLoaderroot
 

Creates Packages 

PeerLoader1
 

ControlUnit 

PeerLoader2
Sensor 

PeerLoader3
 

Actuator 

Configuration 1 

Object 

Thread ControlUnit 

Sensor Actuator 

Configuration 2

Object 

Thread 

ControlUnit 

Sensor 

Actuator 



 5

 
Figure 3. Changes to the PeerLoader tree 
configuration after switching to Configuration 2. 

2.3. Versioning and Automatic Reloading 

Within JPie, each dynamic class has a version.  
Whenever a course-grain change occurs, such as class 
hierarchy modification, the version numbers of affected 
dynamic classes are incremented. 

When a dynamic class’s compiled peer is loaded by 
a PeerLoader, the current version of the dynamic 
class is recorded by the PeerLoader.  When JPie 
requests a peer class from the DynamicLoader, the 
version of the compiled peer most recently loaded is 
compared with the current version of the associated 
dynamic class.  If the version numbers match, the 
DynamicLoader simply returns the cached compiled 
peer class.  

However, modifications to the class hierarchy 
necessitate the reloading of affected classes’ compiled 
peers.  To initiate lazy reloading, the hierarchy 
modification process will increment the version numbers 
of affected classes.  The next time JPie asks the dynamic 
class loader for a modified class’s compiled peer class, 
the version discrepancy will be observed.  The 
DynamicLoader will then trace the version 
discrepancies up the class hierarchy until the root 
PeerLoader is reached.  The compiled peer with a 
version discrepancy that is highest in the tree is reloaded 
first, and then all compiled peers below it are reloaded 
sequentially by a breadth-first traversal of the tree.  This 
both automates the reloading process and guarantees that 
all classes are loaded in the appropriate order.  

3. Effects of Class Hierarchy Modification 
in a Live System 

Modification to the class hierarchy in a live system 
has the potential to cause a wide variety of problems, 
from missing methods to the unexpected execution of 
old code.  These problems may arise in any class which 

has its ancestry modified.  In this section, we first 
classify the problems which can arise from hierarchy 
modification.   We then discuss how these problems are 
handled in JPie. 

3.1. A Classification of Potential Problems 

There are three main effects of hierarchy 
modification that can lead to problems: the removal of 
inherited members (fields and methods) from a class, 
the addition of inherited members to a class, and the 
difference in types between old and new instances of 
the class.  Recall that each dynamic class has a 
compiled peer, and that each instance of a dynamic 
class has two parts: the dynamic instance (which holds 
the values of the dynamically declared fields) and the 
compiled peer instance (which holds the values of the 
fields inherited from compiled ancestors and on which 
inherited compiled methods are executed).  Also recall 
that the compiled peer’s type represents the position of 
the dynamic class in the class hierarchy.  When 
compiled code holds a reference to an instance of a 
dynamic class, it does so by holding a reference the 
compiled peer instance.  However, when the position of 
a dynamic class in the class hierarchy changes, the 
compiled peer of that class must change accordingly.  
When this happens, we say that the previously existing 
instances are abandoned.  In other words, the type of 
the compiled peer instance is no longer the compiled 
peer class of its corresponding dynamic class.  

Suppose that an ancestor of a dynamic class C 
changes from A to A′.  (That is, either C’s parent 
changes from A to A′, or C has some ancestor D whose 
parent changes from A to A′.)  We have three cases: A′ 
is a descendent of A, A′ is an ancestor of A, or A′ is 
unrelated to A. 

When A′ is a descendent of A, inherited members 
will only be added to C.  When A′ is an ancestor of A, 
inherited members will only be removed from C.  
When A′ is unrelated to A, inherited members will be 
both added to and removed from C.  In all three 
cases, the old and new types of C will differ.  So, in 
all three cases, the existing instances of C will 
become abandoned. 

The distance from C to the closest common ancestor 
of A and A′ gives an indication of the amount of change 
C undergoes in a hierarchy modification.  In the first 
two cases, this will be the distance to A and A′ 
respectively.  However, in the third case (A and A′ 
unrelated) the closest common ancestor will be further 
away than both A and A′.  Loosely speaking, the 
number of potential problems increases as the distance 
to the closest common ancestor becomes greater, since 
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the number of classes from which members are 
inherited and disinherited increases. 

3.2. Handling Abandoned Instances in JPie 

The JPie philosophy is to aggressively support run-
time program modification, even when such changes 
affect existing instances.  In keeping with this 
philosophy, our goal is to allow abandoned instances to 
continue to participate in the execution, provided that 
the fact that they are abandoned cannot be observed.  
Recall that within JPie, dynamic classes may extend 
either dynamic or compiled classes, but compiled 
classes cannot extend dynamic classes.  As a result, 
class hierarchies have a distinct boundary between 
compiled classes and dynamic classes.  This boundary 
affords us a significant advantage when handling 
hierarchy modification problems. 

We break up the possible hierarchy modifications 
into two categories: dynamic ancestor changes, and 
compiled ancestor changes.  In the example given in 
Figure 1, the Sensor and Actuator classes undergo 
only dynamic ancestor changes (the only compiled 
ancestor of these classes, Object, remains the same in 
both configurations).  In contrast, the ControlUnit 
undergoes only a compiled ancestor change, adding 
Thread (a compiled class) to its ancestry. 

While we keep these changes isolated in our 
example for expository purposes, a dynamic class may 
undergo both types of changes in a single hierarchy 
modification.  However, any hierarchy modification 
consisting of both dynamic and compiled ancestor 
changes can be decomposed into a series of hierarchy 
modifications, each containing only one type of 
ancestor change. 

The next two sections discuss how the problems 
presented in Section 3.1 are handled for each type of 
ancestor change. 

3.3. Dynamic Ancestor Changes 

Dynamic ancestor changes occur when a dynamic 
class loses and/or gains new dynamic ancestors.  In 
practice, most design changes occur in user-defined 
classes, rather than in the library classes that support 
them.   As a result, the majority of ancestor changes are 
of this type.  Due to the level of indirection created by 
the dynamic class system, problems arising from 
dynamic ancestor changes are easier to handle than 
those arising from compiled ancestor changes. 

All inherited members that are added or removed 
from a dynamic class as a result of a dynamic ancestor 
change will be dynamic members.  That is, all modified 
members will be declared within some dynamic class.  

These modifications, then, are exactly the same fine-
grained modifications already supported by dynamic 
classes [11] in JPie, and will be reflected in both 
abandoned and new instances.  (In JPie, members are 
used by a reference to the declaration object, not by 
name matching, so the overriding of methods is not 
based on the lexical signature of the methods, and 
fields are not masked by name.  Therefore, there is no 
risk that a newly acquired dynamic member will 
accidentally override or mask a member declared by a 
compiled ancestor.)   

The compiled peer types of new and abandoned 
instances will differ as a result of dynamic ancestor 
changes.  However, no problems arise because of this.  
Because only the dynamic ancestors of new and 
abandoned compiled peer instances differ, all compiled 
peer instances will have identical compiled ancestors.  
References in complied classes can only have compiled 
types.  As a result, compiled classes will not have direct 
access to the dynamic members which were added or 
removed.  All members directly accessible by compiled 
class instances will be expressed through both the new 
and abandoned compiled peer instances.  Furthermore, 
code contained in compiled classes can only perform 
type casts to other compiled types.  Due to their identical 
compiled ancestries, both new and abandoned compiled 
peer instances may be cast identically.   

Unlike the type of the compiled peer instances, 
which are determined and fixed upon creation, the 
dynamic class system allows the dynamic instance’s 
type to change.  Therefore, abandoned instances of a 
modified dynamic class will automatically express the 
new type to all instances of dynamic classes. 

While dynamic ancestor changes may introduce 
problems, these problems are dealt with elegantly by 
the system.  As a result, both abandoned and new 
instances behave identically, and are indistinguishable 
to the user. 

3.4. Compiled Ancestor Changes 

Compiled ancestor changes occur when a dynamic 
class loses and/or gains new compiled ancestors.  
These changes lead to the addition and removal of 
inherited compiled members (members declared in 
compiled classes).  In addition, abandoned compiled 
peer instances will express the wrong type to other 
compiled instances, a problem that cannot be solved by 
the ability to modify the type of the dynamic instance. 

Suppose class C undergoes a compiled ancestor 
change, and the user’s system contains both abandoned 
and new instances of C.  Code that interacts with these 
instances may not function properly—type casting may 
fail, and members may be unavailable.  These failures 
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will lead to run-time exceptions, which will be caught 
by the JPie debugger.  However, depending on whether 
the instance is new or abandoned, these exceptions will 
mean very different things.  We consider each of these 
cases in turn. 

A failure occurring in a new instance is caused by 
old code that attempts to access a member of C which 
has been removed (or that attempts to perform a cast to 
the abandoned C type).  This code is incorrect (out-of-
date), and must be modified.  The error message JPie 
provides for the offending code will convey the 
appropriate message to the user, and any attempt to 
execute the code will pause the execution at that point 
in the debugger so that the user can correct it. 

A failure occurring in an abandoned instance is 
caused by code that attempts to access a new member 
of C (or that attempts to cast the abandoned instance to 
the new type).  If we simply allow execution to 
proceed, the exception thrown in this case could be 
misleading.  The code may in fact be correct, and fail 
only because it was executed using an abandoned 
instance. Our goal is to allow the use of abandoned 
instances as long as possible, but to prevent execution 
within an abandoned instance that would expose its 
type incompatibility.  To this end, when a class 
undergoes a compiled ancestor change, its existing 
instances are marked as stale.  Code is allowed to 
interact with this class exactly as before.  However, any 
exceptions which occur as a result of stale instances are 
caught before reaching the debugger, and rethrown as 
an AbandonedInstanceExcepetion.  This 
exception reveals the true cause of the error to the 
programmer, and allows the programmer to abort 
offending threads and resume testing and development 
with the remaining instances. 

Returning to the example shown in Figure 1, we see 
that new and old instances of Sensor and Actuator 
will function identically, because these classes have 
only undergone dynamic ancestor changes.  However, 
ControlUnit has undergone a compiled ancestor 
change.  Any existing ControlUnit instances may 
lead to abandoned instance failures. 

In practice, we expect that most hierarchy 
modifications in a live development environment will 
occur within the dynamic portion of the hierarchy, and 
therefore will not result in abandoned instance failures.    
Furthermore, we expect that programmers would 
naturally restart the execution after drastic hierarchy 
changes that could result in such failures.  In cases 
where the programmer does not anticipate abandoned 
instance failures, the run-time system will call attention 
to such failures through the exception mechanism, and 

provide the opportunity to continue executing with the 
remaining instances. 

One might contemplate entirely eliminating 
abandoned instance failures by adding support for 
object migration.  However, besides placing an 
unnecessary burden on the developer, comprehensive 
migration support would require modification of the 
JVM so that references could be replaced globally [15].  
Execution within the standard JVM has been a key goal 
in the development process of JPie as a whole, and is a 
constraint in the design of many systems.  As a result, 
the work presented above represents the limit of 
abandoned instance interoperability that can be 
achieved under this constraint. 

4. Graphical Manipulation of the Hierarchy 

JPie provides direct manipulation of graphical 
representations of programming objects.  In order to 
extend this paradigm, a graphical user interface (GUI) 
for hierarchy modification was developed.  We briefly 
present the GUI design and then discuss how the GUI 
interacts with our class reloading framework to ensure 
that reloading occurs correctly and efficiently. 

4.1. Design of the Class Hierarchy Editor 

Within JPie, a programmer’s modifications to the 
system are typically reflected immediately.  However, 
an “atomic” hierarchy modification often consists of 
several discrete class ancestry changes.  For instance, 
in the example above, each dynamic class undergoes a 
parent change.  However, the programmer intends the 
group of modifications to represent one atomic change 
to the system. 

To meet this need, modifications to the class 
hierarchy must first be specified within the editor, and 
then committed to the system.   The programmer may 
specify any number of class ancestry changes without 
affecting the system.  Once specification is complete, 
the programmer commits the changes.  The system then 
determines the most efficient order to update and 
reload affected classes. 

Besides meeting atomicity requirements, the 
specification and committal process provides several 
benefits.  Foremost, it allows the programmer to 
experiment with the design without introducing new 
abandoned instances at the specification of each change.  
If the programmer chooses not to use all or part of a 
hierarchy modification before committal, existing 
instances of the involved classes are not abandoned.  
Additionally, the committal process allows the system to 
determine the most efficient way to modify the system so 
that the user’s hierarchy modifications are reflected.  A 
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user’s thought process may not follow the top-down 
modification necessary to update the system efficiently.  
Updating the system after each modification made by the 
user could result in the wasted creation of many 
intermediate classes.  (This efficiency concern is 
discussed further in Section 4.3.) 

The committal process opens the door for one 
potential problem, however.  Due to Java language 
constraints, some modifications to the hierarchy are not 
allowed.  For example, final classes cannot be 
extended.  Additionally, the interfaces and ancestors of 
a class must not have methods with conflicting 
signatures. (Conflicting signatures arise when two or 
more methods have identical names and parameter 
types but different return types, or when the exceptions 
thrown by a method are incompatible with those 
thrown by the method it will potentially override.)  
Without some analysis of a programmer’s 
modifications during the specification process, he or 
she could proceed down a design path which is not 
allowed.  Presenting the user with the problems during 
committal would both confuse the user and go against 
the grain of immediate feedback central to a live 
development system. 

In our system, this problem is solved through the 
use of a signature builder.  When the user attempts to 
specify a modification to the hierarchy, the signature 
builder constructs signatures of each affected class to 
determine if the modification would violate any 
language constraints.  If such a violation would occur, 
the signature builder throws an exception which details 
the type of violation.  The GUI does not allow 
specification of the modification, and provides 
immediate feedback as to the reason. 

4.2. Use of the Class Hierarchy Editor 

The class hierarchy editor initially displays no 
classes.  The programmer drags the classes he or she 
wishes to work with from a class listing into the class 
hierarchy editor.  The representation of classes is 
shown in Figure 4.  Both compiled and dynamic classes 
may be placed in the hierarchy editor, but 
modifications may only be made to dynamic classes.  
Classes which are not involved in a modification may 
also be removed from view at any time. 

In the class hierarchy editor, modifications are made 
through a set of drag-and-drop actions, called gestures.  
While a complete discussion of the supported gestures is 
beyond the scope of this paper, an example is shown in 
Figure 4.  There, the line connecting a child to its parent 
class is being dragged to a new parent, specifying an 
inheritance change.  Additional gestures exist for class 
creation, class extension, and interface implementation. 

 
Figure 4. A view of the class hierarchy editor.  
Here the parent of the Sensor class is being 
modified. 

When a modification would violate Java language 
semantics (as discussed in Section 4.1), gestures for 
this modification are disallowed.  When the user 
attempts a disallowed gesture, a visual cue (unique to 
the gesture) and a message in the editor’s status bar 
explain the reason the gesture is not allowed. 

When the new design is complete, the 
programmer selects an option to initiate the commit 
process.   Alternatively, the user may chose to save 
the current configuration for later work, or discard 
the changes entirely. 

4.3. The Commit Process 

The committal process is intended to be an atomic 
change to the system.  However, each affected dynamic 
class must be modified and its compiled peer reloaded 
sequentially.  To guarantee atomicity, then, execution of 
dynamic code (and thus, creation of dynamic instances) 
must be halted during the entire committal process.   

The signature builder guarantees that the user’s 
modifications represent a valid Java hierarchy at any 
point in the editing process.  Therefore, the committal 
process must only be concerned with how to perform 
the modifications. 

A Java class file contains information not only about 
the class itself, but also about the class’s parent.  
Information about a class’s additional ancestors is 
determined when the class is loaded.  Therefore, 
dynamic classes that undergo any type of ancestor 
change must be have their compiled peers reloaded 
after a hierarchy modification, but only dynamic 
classes that undergo a parent change must have their 
compiled peers recreated and recompiled. 
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As discussed in Section 2, the order in which classes 
are reloaded is important for correctness.  The design of 
the dynamic class loader enforces this order.  While the 
order in which new peer classes are created and 
compiled is not important for correctness, it is important 
for efficiency.  Suppose dynamic classes A and B have 
both undergone parent changes, and thus their peer 
classes must be recreated and recompiled.  Further 
suppose that B is now the child of A.  If B’s compiled 
peer is recreated and recompiled before A’s compiled 
peer, the resulting class file will contain information 
regarding the old version of A.  Once A’s new compiled 
peer is created and compiled, B’s compiled peer will 
have to be created and compiled again.  This problem is 
solved by recreating and recompiling from the root of the 
new hierarchy downward.  

The versioning system implemented in the dynamic 
class loader (Section 2.3) guarantees that classes will 
be reloaded when necessary.  As a result, the committal 
process does not need to explicitly force the reloading 
of affected classes.  The committal process, then, 
consists of three steps: 

1. Determine an efficient committal order. 
2. Recreate and recompile peer classes which 

have undergone parent changes in the 
determined order. 

3. Update version numbers of dynamic classes 
which have undergone ancestry changes, and 
mark existing instances of those classes as 
stale. 

As stated above, the efficient committal order is 
determined by a breadth-first traversal of the new 
hierarchy tree.  New peer classes are created and 
compiled through the same mechanism used to 
create the initial peer classes.  The final step, 
updating version numbers and marking existing 
instances as stale, is straightforward and may be 
done in any order (since execution of dynamic code 
is halted during committal). 

5. Further Applications 

The pairing of dynamic classes and the dynamic 
class loader could be used to provide support for 
run-time code modification and updating in any 
system.  This improves on prior approaches because 
it does not require modification of the language or 
the JVM.  It is also simpler to use and maintain than 
alternate approaches. 

If modification of the JVM was allowed in a given 
application, the use of the dynamic class loader would 
be even more versatile.  By adding a global reference 
replacement mechanism to the JVM, references to old 

versions of a class’s instances could be replaced with 
pointers to new replacement instances after reloading 
and migrating.    

6. Future Work 

One area of future work is to allow class renaming 
and package reassignment in addition to inheritance 
changes.  Many of the same underlying reloading 
techniques will be used to accomplish this. 

 Another area of future work involves modifying 
JPie so that the application being developed runs in 
a separate JVM from JPie itself.  This would allow 
the programmer’s application to be killed and 
restarted without restarting JPie.  With this 
modification, the programmer would have the 
option of restarting the application after drastic 
hierarchy modifications, eliminating the possibility 
of abandoned instance failures. 

7. Conclusion 

We have presented a class reloading mechanism 
which supports the ability to modify the class hierarchy 
in a live development system without modification of 
the language or the JVM.  Live modification of the 
class hierarchy encourages experimentation, creating a 
fluid development process lacking the penalties 
typically associated with making design changes after 
implementation has begun. 

We provide a fluid development environment that 
supports maximally live type-safe class hierarchy 
modification to the extent that there is no extra burden 
on the developer.  While drastic changes may require a 
developer to restart an application, the more frequent 
kinds of incremental changes and minor class hierarchy 
design changes can proceed during live execution 
without the overhead of specifying object migration.  
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