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ABSTRACT
We describe a highly scalable algorithm for secure sys-
tem evolution in an infrastructure for widely distributed
Byzantine fault-tolerant applications. To maintain high
availability, the system and its applications evolve on-line,
providing uninterrupted service during installation of up-
grades. Installations are made to appear atomic with re-
spect to other installations and application execution steps.
Our algorithm guarantees safe installation despite Byzan-
tine faulty replicas and replica groups. An initial phase pre-
pares replica groups for an upgrade, while a second phase
triggers the installation of the upgrade by gossip among
groups. A simple but novel scheme using secret sharing
and Byzantine quorums prevents faulty replicas and replica
groups from disrupting or maliciously exploiting installa-
tions. Installation message complexity and computational
complexity grow linearly with the number of replicas.
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1 Introduction
Fault-tolerant systems use replicated servers to provide
correct service even if a bounded number of their repli-
cas fail. A Byzantine faulty[1] replica may behave ar-
bitrarily, for example due to errors or attacker intrusion.
We have proposed Survivable Workflow Transaction In-
frastructure (SWFTI) [2], a decentralized architecture sup-
porting Byzantine fault-tolerant application execution. Us-
ing recent algorithms for efficient Byzantine fault-tolerant
replication of both passive [3] and active [4] application
components, our infrastructure is designed to confer sur-
vivability on long-running applications, enabling them to
make progress despite Byzantine faulty replicas. Surviv-
ability greatly benefits critical infrastructure such as finan-
cial, health-care and avionics systems, but also business
processing automation services of increasing importance,
such as supply chain management and freight tracking.

A fault-tolerant system usually needs to provide high
availability as well. SWFTI supportsdynamic evolution
[5], whereby service is maintained during the upgrading
of applications and system software. This reduces main-
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tenance downtime and expedites error repair. Since the
execution model of SWFTI is based on atomic execution
steps, an evolution execution step must appear atomic with
respect to other evolution execution steps, as well as ordi-
nary application execution steps. However, it is critical for
the system’s evolution mechanism to not afford intruders
new opportunities for attack. Our challenge, therefore, is
to dynamically and atomically update a large number of
distributed replicas in the presence of Byzantine faults.

The contribution of this paper is an efficient and scal-
able solution to this problem that ensures safety, liveness
and security for dynamic upgrade installations. Even if
the bound on faulty replicas tolerated has been exceeded
in some number of replica groups, the algorithm guaran-
tees safe installation in the correct groups. This form of
fault isolation is important, since we expect fault-tolerant
and non-fault-tolerant (i.e. non-replicated) groups to co-
exist in our infrastructure. The algorithm is decentralized
and does not depend on a single coordinator, increasing its
robustness and scalability.

The remainder of the paper is organized as follows.
Section 2 discusses related work in dynamic evolution.
Section 3 presents the system model and a simple, baseline
solution. Section 4 gives a scalable algorithm that safe-
guards upgrades if each group is correct, even if some of
the upgrade coordinators are faulty. Section 5 augments
the algorithm so that upgrades are safeguarded in correct
groups even if the bound on the number of faulty replicas
has been exceeded in other groups.

2 Related Work
Existing work in dynamic evolution falls into two main cat-
egories: (1) upgrading of local processes, through transfor-
mation or migration of their volatile state [6, 7, 8, 9, 10] and
(2) upgrading of distributed systems [5, 11, 12, 13, 14, 15,
16]. Our scope is the latter, although many techniques for
local processes are applicable to distributed settings. Aside
from communication and language integration issues, the
distributed work focuses on safeguarding the consistency
and correctness [5, 17] of applications from race conditions
during upgrade installations. A common theme in these
early approaches and many later ones [18, 19, 20] is toqui-
escethe servers or communication links affected by an up-
grade, by halting them and rejecting or delaying operation
calls until installation is complete. However, quiescing a
large number of servers is disruptive, since most or all ap-



plication processing is halted on all servers at least until the
final server enters its quiescent state.

Karamanolis and Magee [21] describe a group-
multicast-based protocol for adding and removing replicas
from replica groups. Our algorithm is more general, but
simpler, leveraging our infrastructure’s support for atomic
operations. Eternal [22] dynamically evolves replicated
(non-Byzantine) fault-tolerant CORBA servers. Replicas
are restarted one by one in a hybrid version of the old and
new software, after which they atomically switch to the
new. Replicas are quiesced before the switchover using a
protocol that resembles distributed commit [23]. A signif-
icant drawback is that distributed commit does not scale
well (see Section 3). Since we want to support atomic evo-
lution of large numbers of replica groups, a different ap-
proach is required.

Our algorithm does not quiesce nodes, but rather exe-
cutes installations in a way that makes them appear atomic
[24, 25, 26]. Aborted installations have no effect, so an
installation attempt never leaves the system in an interme-
diate state. Many of the non-transactional approaches do
not adequately address failures during installation. To our
knowledge, no prior dynamic evolution system tolerates
Byzantine failures.

In addition to being robust, atomic dynamic evolution
also makes it easier for developers and system administra-
tors to reason about distributed upgrades, since they appear
like steps in a simple, sequential execution. Furthermore,
when the caller(s) and implementer(s) of an evolving inter-
face are upgraded together atomically there is no need to
develop “wrapper” software [19, 27] to translate between
old-version and new-version calls. SWFTI does allow such
wrappers for continued support of external system clients,
if only to inform them about the deprecation of old inter-
faces. However, using them as a means of obtaining logi-
cally atomic installation [25] requires significant develop-
ment effort and ingenuity.

A limitation of the atomic approach is its need for ap-
plication co-operation to define transactional boundaries.
We note that the non-transactional systems also require
some co-operation to determine execution points at which
installations may take place. These may be explicit recon-
figuration points in code [9, 14] or implicit ones such as
object instance creation time [28] or run-time detection of
states of stack unwinding [7, 8, 10], with the concomitant
overhead.

A second limitation is the scalability of atomic oper-
ations, in particular when implemented using locking for
concurrency control. This paper addresses that issue, by
eschewing distributed transactions in favor of an algorithm
that commits installations using Byzantine fault-tolerant
diffusion between replica groups. Our basic approach is
related to that of Boyapati et al [26], for lazily propagating
installation between objects, but is novel in the methods
used to efficiently tolerate faults.

When an upgrade requires application state to be
mapped from an old version to a new one, we assume

the upgrade providestransformation functionsfor that
purpose, which may operate on persistent state [10, 25],
volatile state [26, 9, 22] or both. The transform func-
tions may be executed eagerly or lazily. While our algo-
rithm doesn’t simultaneously halt the entire set of evolv-
ing replica groups, each individual group has to halt while
transforming its local state, if it does so eagerly. Therefore,
a lazy approach may be suitable for replicas with large per-
sistent states. The details of how our upgrades are carried
out locally are similar to the existing work.

3 Baseline approach
This section briefly describes the relevant parts of our sys-
tem model [2]. It then describes a baseline evolution pro-
tocol using distributed transactions. While this protocol
is workable for small installations, its main purpose is to
serve as a correctness definition for our scalable algorithm.

3.1 System model

SWFTI consists of groups of deterministic replicas [29]
that use a Byzantine agreement protocol [4] to ensure that
all correct replicas take the same execution steps and main-
tain consistent states. We assume asynchronous communi-
cation with the relatively weak condition that the delay for
message delivery does not grow faster than real time [3].
A replica group of sizen tolerates the Byzantine failure of
no more thanf = b(n − 1)/3c replicas, the known lower-
bound [30]. Acorrect replica executes its application and
agreement protocol according to specification. A replica
that is not correct isfaulty and may behave arbitrarily. For
example, it may return erroneous results or even seek to un-
dermine system function, possibly in collusion with other
faulty replicas. Similarly, a replica group whose bound of
faulty replicas has not (has) been exceeded is called acor-
rect (compromised) group.

The application components in a SWFTI infrastruc-
ture are passive, persistentobjectsand activetransactions.
Objects are deterministic state machines that passively wait
for their operations to be invoked, whereas transactions ac-
tively observe and update the state of objects, by invok-
ing non-mutatingaccessoroperations and mutatingmuta-
tor operations on objects. Each component belongs to an
application, a logical collection of objects and transactions
owned and controlled by some principal, the application’s
deployer. Each application is executed by a set of replica
groups. Each replica belongs to exactly one group and each
replica of a particular group runs on a separate physical
host machine. Each group executes (a part of) a single ap-
plication. Two groups areneighborsif a transaction run-
ning in one of the groups reads or writes an object in the
other group.

The state of the distributed system can be roughly
partitioned intoapplication state, that changes as applica-
tion transactions execute, andconfiguration state, that de-
scribes the components of each application: their connec-
tions, replica groups, software implementations and phys-



ical hosts. The configuration is changed through thein-
stallation of upgrades, that specify changes to any of the
above (including, possibly, changes to application state).
The SWFTI execution model stipulates that an installation
occur as an execution step that is atomic with respect to
other installation execution steps and ordinary application
execution steps. Thus, application transactions in the dis-
tributed system never “observe” a partially completed in-
stallation; it appears to start and complete in an indivisible
instant of time. Furthermore, installations that abort appear
as if they never took place.

3.2 Evolution steps and correctness

Let ∆ be an upgrade that affects some subset of applica-
tions in the system. LetG denote the set of replica groups
running these applications which are affected by∆ andR
the set of replicas in the groups ofG. An upgrade isvalid if
it is well-formed and duly authorized for the changes it con-
tains. We omit the details here, but assume that (1) for each
replicar ∈ R there is a public / private [31, 32] key pair
(ru, rp), whererp is known only tor but ru is known to
everyone, and that (2) each correct replicar of each group
g ∈ G is able to securely verify the validity of∆g, the
pieceof upgrade∆ that affectsg. We require the following
for the installation of∆:

Safety. A correct replica of a correct group inG installs
∆ if and only if all correct replicas of all correct groups in
G install ∆.

Liveness. If ∆ is a valid upgrade then eventually at least
one correct replica in a correct group inG will install ∆.

3.3 Transactional Installation

A straightforward way to satisfy our safety and liveness
conditions is to store the configuration within the sys-
tem itself in special system objects. Evolution execution
steps can then execute as ordinary atomic Byzantine fault-
tolerant operations on these objects, with safety and live-
ness guaranteed by our Byzantine agreement protocol. We
designate for each groupg ∈ G a group objectog, that
stores the configuration ofg and its application. Objectog

has an operationInstall(∆g), accepting an upgrade piece
for g as its parameter. An additional benefit of this ap-
proach is that evolution can be secured using the SWFTI
distributed security system (not discussed here), the same
as ordinary application operations.

If multiple groups are affected by an upgrade, the in-
stallation could be executed within a distributed transac-
tion, leveraging the system’s support for atomic execution.
This would simplify installation considerably, obviating the
need for node quiescence or complex synchronization pro-
tocols. However, a distributed evolution execution step that
upgrades a large number of components may fail to ever
commit, suffering aborts at some group(s) due to time-outs,
before acquiring exclusive access to other groups. Even for
a single group, upgrading a large data object in an atomic

transaction may render the object unavailable for a long
time, delaying or forcing the abort of a large number of
other transactions. This applies in particular to operations
that add new replicas to a group, since the replica’s state
must be included in the upgrade and/or acquired from other
replicas, which may be time-consuming. Therefore, in the
next two sections, we describe an installation algorithm that
scales to large numbers of replicas and maintains high ap-
plication availability while still ensuring safety and live-
ness.

4 Scalable, diffusing installation
This section describes our algorithm for overcoming the
limited scalability of transactional installation. It pro-
ceeds in two phases. In thepreparationphase, groups are
“primed” for their upgrade by providing them with their
upgrade pieces. Once all groups acknowledge their readi-
ness, the installation is triggered in acommitphase, that
diffuses through the system, piggybacked on messages be-
tween groups, such that the installation appears atomic.

4.1 Installers and pieces

The installation of an upgrade is coordinated byinstallers
executing as survivable applications within SWFTI. We opt
not to trust installers, though, since that would make them
a highly valuable target for attackers. A compromised in-
staller could, for example, only prepare a subset of the
groups and then trigger the commit phase, violating safety.
Our algorithm ensures this cannot happen. However, it can-
not preclude a faulty installer from violating liveness, by
not completing the preparation phase or not triggering the
commit phase. For this reason, we allow multiple installers
to work concurrently on an installation, guaranteeing live-
ness as long as at least one installer is correct. A secondary
advantage is that concurrent installers can potentially com-
plete an installation in a shorter time than can a single in-
staller.

The deployer of an upgrade∆ splits the upgrade into
upgrade pieces, one for each groupg ∈ G. It encrypts
piece∆g of group g using a freshly generated symmet-
ric key kg and gives the encrypted piece to the installers.
This encryption prevents installers from gleaning informa-
tion from pieces. For each replicar of each groupg, the de-
ployer provides the installers with〈kg〉σru

, i.e. keykg en-
crypted withr’s public key, which enablesr (and onlyr) to
later decryptkg using private keyrp. The deployer grants
the installers authorization to callog.PrepareInstall(∆g)
on each group objectog, which is an operation whose re-
turn value indicates whether groupg acceptspiece∆g for
installation orrejectsit. It also authorizes installers to call
og.CommitInstall() on at least one group objectog, which
is the operation that commits the installation on groupg.
Both operations are defined to be idempotent: if a group
has already accepted, rejected or committed a piece, it re-
turns the same value as the first call for that piece, with-
out any change in the group’s state. This allows multiple



<a1>σr1

<a2>σr2

<a3>σr3

<a4>σr4

r1 r2

r3 r4

a1

a1

a1a2

a2

a2

a3

a3

a4
a4

a4

a3∆g sg

g1

g2

g3

sg1

sg3

sg2

(1) (2)

(3)

⊗ = τ

g1

g2

g3τ

τ

(4)

Figure 1.The main steps in installation, (1) group replicas accept
their piece and decrypt shares, (2) group replicas exchange shares
and reconstruct the group secret, (3) after receiving all group se-
crets, installers compute trigger codeτ , (4) installers trigger in-
stallation,τ diffuses between groups.

installers to attempt to prepare the same piece at a group
without ill effect. The installation completes without fur-
ther involvement from the deployer’s host, which is not a
single point of failure and does not need to be survivable.

4.2 Installation safety

We must ensure that an installer can trigger the commit
phase only after all groups have accepted their pieces. A
straightforward method would be to have installers collect
digitally signed responses from allPrepareInstall() calls,
and give these as proof of readiness toCommitInstall()
calls. This is burdensome, however, as each replica of each
group would need to know about all other groups inG and
their replica public keys, in order to verify the response
signatures. Furthermore, the diffusion of commits would
be hampered by having to include (and verify) on the order
of |R | signatures per message.

Our solution is for the deployer to create atrigger
codethat acts as a “password” for the commit phase which
installers can only obtain once all groups are prepared. Fig-
ure 1 summarizes how correct replicas and installers re-
cover the trigger code and then use it to trigger an installa-
tion. The deployer creates the trigger code,τ , as follows.
For each groupg ∈ G, it generates a large2 random in-
tegersg, called thegroup secret codeof g, and includes
it in upgrade piece∆g. The deployer computesτ for the
overall installation as

⊕
g∈G sg, where⊕ denotes the bi-

nary exclusive-or operator. Finally, the deployer computes
a cryptographic digestD(τ) of τ , and includes it in every
installation piece.

Group objectog returns group secretsg from a

2Large enough to resist guessing, e.g. 128 bits.

PrepareInstall() call only if it accepts the piece offered,
and only executesCommitInstall() for that upgrade if the
correct trigger codeτ is passed in as a parameter. It veri-
fies an incoming trigger code by computing its digest and
comparing with theD(τ) value from its piece. Since an in-
staller can only computeτ once it has obtained the secrets
of all groups, it can only trigger the commit phase once all
groups are ready, as required.

The algorithm as described has a vulnerability: a
faulty installer can collude with a faulty replicar′ of some
groupg to obtainsg directly from r′. Hence, it can trig-
ger the commit phase without ever preparingg, violating
safety. Therefore, instead of placingsg directly into ∆g,
the deployer breakssg into shares, one sharear for each
replicar of g, using a(k, n) secret sharing scheme [33].
The scheme is set up so that at leastk = f + 1 shares out
of n = 3f + 1 are needed to reconstructsg, wheref is the
maximum number of faulty replicas tolerated byg. The (at
mostf ) faulty replicas of a correct group cannot conspire
to erroneously reconstruct and releasesg, nor can their re-
fusal to release shares prevent the (remaining2f + 1) cor-
rect replicas from reconstructingsg and accepting a piece.

The deployer includes〈ar〉σru
in each piece∆g for

each replicar of g, that is: the share ofr encrypted with
the public key ofr. To prevent a faulty replica from passing
forged shares to its peers, the deployer also includes in each
∆g a mapping from each replicar of g to the digest of
that replica’s share. Correct replicas compute the digests
of shares offered to them and discard shares whose digests
don’t match those from the map. We could alternatively
use cheating prevention schemes [34, 35], but they are not
strictly required since we trust the deployer (dealer) with
respect to creating shares for the deployer’s own upgrades.

An installer can only commit upgrade∆ in a group af-
ter obtaining all group secrets, meaning that all groups will
commit ∆. If at least one installer is correct, then even-
tually all groups will prepare (through the actions of the
correct installer and possibly some of the other installers
as well) and the correct installer may then trigger the com-
mit. Recall that in this section we assumed all groups in
G are correct, since a compromised replica groupcanvio-
late safety in this version of the algorithm. We enhance the
algorithm to handle that case in Section 5.

4.3 Atomic, diffusing installation

Once a correct installer has computed the trigger codeτ
for an upgrade∆, it callsog.CommitInstall(τ) for at least
oneg ∈ G. The next time a groupg that has just committed
∆ communicates with a neighboring groupg′, it diffuses
the installation tog′ by piggybackingτ on its message, to
prove that∆ has committed (g′ simply ignoresτ if g′ /∈ G).

The pseudo-code in Figure 2 illustrates the behavior
of a group when making and fulfilling requests. If a group
learns about the commit of one of its pending upgrades via
an incoming request, it immediately commits the installa-
tion of the upgrade and subsequently services the request



Tg ≡ trigger codes destined for groupg, initially ∅
P ≡ prepared trigger codes in this group, initially∅
C ≡ committed trigger codes in this group, initially∅
MakeRequest(to-groupg)

Θ ≡ this transaction (about to make a request tog)
Send trigger code setTg with request tog; Tg ← ∅
Wait for g’s response, containing a setR of trigger codes
Rnew ≡ (R ∩ P ) \ C
If Rnew 6= ∅ then

For each neighboring groupg′ 6= g: Tg′ ← Tg′ ∪Rnew

Abort(Θ); Commit piece of eachτ ∈ Rnew; Restart(Θ)
ReceiveRequest(from-groupg, with trigger code setR)

Rnew ≡ (R ∩ P ) \ C
If Rnew 6= ∅

For each neighboring groupg′ 6= g: Tg′ ← Tg′ ∪Rnew

Commit piece of eachτ ∈ Rnew

Execute request; Return withR = Tg \Rnew; Tg ← ∅

Figure 2. Group making and serving requests.

through execution of the new, upgraded software. Since
our algorithm aborts transactions that learn about installa-
tion commits from request return values, the execution ap-
pears as if that case never occurs.

Our algorithm ensures that commits are linearizable
[36] with one exception: an external clientc /∈ G could in-
voke requests on two groups inG where only one of them
has committed the upgrade. To prevent this, groups in-
clude in all their request responses agroup versionv, that
changes with each committed group upgrade. Clients store
the version of each group they call and pass it along with
their requests to that group. A group receiving an outdated
versionv′ returns back the current version and the trigger
codes of all upgrades that the group has installed sincev′

was current. The external client passes the codes to other
groups it calls (including those it has called already, e.g. as
a part of the client transaction commit message), ensuring
they commit their pending installations (if any) or abort the
client transaction in time to ensure linearizability. Since a
faulty external client can only trigger installations that are
ready to commit, it can only violate the linearizeability of
its own executions, by not forwarding trigger codes.

To reduce the delay from the beginning of a commit
to its completion, we allow groups to proactively diffuse
trigger codes by callingCommitInstall(τ) on their neigh-
boring groups, in addition to the passive piggybacking on
existing messages, as described.

4.4 Aborts, replay attacks and conflicts

A large organization deploying many applications and
replica groups may delegate evolution authority to multiple
sub-deployers. Unless these coordinate among themselves,
they may attempt to prepare upgrades on overlapping sets
of groups. An upgrade∆1 by deployerd1 may be rejected
by a groupg if, unbeknowst tod1, another upgrade∆2 has
been prepared atg and the two piecesconflictat g, so that

∆1 would be invalid3 if installed after∆2. If some piece
of ∆2 is rejected by a different groupg′ ∈ G, then neither
upgrade can complete and the installation deadlocks.

To resolve this, installers must be able to abort in-
stallations. There may be other legitimate reasons for a
group to reject a piece, for example, if the deployer cre-
ated the upgrade based on outdated information about the
group’s configuration. However, installers must be pre-
vented from violating safety, by committing installations
in some groups while aborting them in others. To ensure
safety, the deployer of an upgrade∆ creates and includes
in all pieces a randomly chosencancellation codec, bro-
ken into shares using the secret-sharing techniques of Sec-
tion 4.2. It also includes the cryptographic digest ofc in all
pieces, to permit cancellation verification. A group returns
c from PrepareInstall() to reject a piece. This causes in-
stallers to callog.AbortInstall(c) for each groupg ∈ G,
which makes the group abort the installation, discard its
piece and diffuse the cancellation code to its neighbors.
Since we assume in this section that all groups are cor-
rect, each group releases its group secret or the cancellation
code,but never both. Therefore, the trigger code and can-
cellation code of an upgrade cannot both be reconstructed
and all groups will either commit or abort a particular up-
grade, preserving safety.

To prevent attackers from re-submitting old upgrades
to groups, we require a deployerd to include in each piece
∆g the trigger-codeτd of the most recent pieced com-
mitted atg (or cancellation codecd, if the upgrade was
aborted), or elseg will reject the piece. The sequence of
theseversion codesestablishes a total order on the upgrades
submitted by a particular deployer to a particular group.

Aborts can break deadlocks, but installations of a pair
of conflicting upgrades can still becomelivelockedif both
upgrades keep getting aborted and deployers keep resub-
mitting them without ever being first to prepare in all the
groups in the upgrade’s intersection. The symmetry can be
broken and livelock avoided if there exists a total4 order
≺ on upgrades, and groups are allowed to postpone previ-
ously accepted pieces, as described in the pseudo-code of
Figure 3.

If a group g receives a pair of conflicting upgrade
piecesd1 andd2 in that order,g rejectsd2 right away if
d1 ≺ d2. Else, if d2 ≺ d1, it waits until either one of
them gets committed. There are two cases; either (1)d1 is
prepared first in every other group, soτ1 gets reconstructed
and∆1 installed, or (2)d2 is first in at least one group, so
c1 is released andτ1 cannot be reconstructed, whileτ2 does
get reconstructed after all groups learn about the cancella-
tion of ∆1. An installer that receives aconflict result for
an upgrade∆ continues with the installation but periodi-
cally retriesPrepareInstall() on theconflict groups, until
either all replica groups have accepted∆ or some replica

3If two pieces do not conflict (e.g. they affect a disjoint set of objects),
then they can be prepared concurrently and committed in either order.

4It only needs to be total for the set of upgrades currently being in-
stalled, not for all upgrades ever installed.



A ≡ pieces this group has accepted, initially∅
C ≡ pieces this group has cancelled, initially∅
X(d) ≡ { d′ ∈ A | d′conflicts with d}
PrepareInstall(valid pieced2 of ∆2)

If d2 ∈ A/C then return secret ofd2 / c2, respectively
For eachd1 ∈ X(d)

If d1 ≺ d2 thenC ← C ∪ {d2};
If ∃ d1 ∈ X(d) : d1 ≺ d2 then returnc2

A ← A ∪ {d2}
If X(d) 6= ∅ then returnconflict
Else return secret ofd2

CommitInstall( t)
If t is the trigger code for somed ∈ A then

Commitd
A ← A \X(d); C ← C ∪X(d)

Else if t is a cancellation code for an upgraded ∈ A then
A ← A \ {d}; C ← C ∪ {d}

Figure 3. Group preparing and committing pieces.

group rejects it. Since we assume that at least one installer
of each upgrade makes progress, either event is guaranteed
to eventually occur.

One way of establishing≺ is for deployers to obtain
signed upgrade sequence numbers from a central service
endorsed by the top-level deployer. One could imagine a
decentralized alternative, where large numbers would be
randomly self-assigned by deployers. To make selfish as-
signments of low numbers computationally expensive, the
“random” number could be defined as the deployer’s set of
current version codes at each group inG, encrypted using
the deployer’s private key. Each group would decrypt the
set and verify that its own code was present in it.

5 Tolerating compromised replica groups
Recall that a replica group whose bound of faulty replicas
has been exceeded is called acompromisedgroup. Relax-
ing the assumption that all groups inG are correct allows,
for example, a compromised group to release both the can-
cellation and group secret codes for an upgrade. A collud-
ing installer could then trigger the commit of the upgrade’s
installation at some groups while aborting it at others, vio-
lating safety.

If it is neccessary to tolerate compromised groups, the
following modification to our approach can be made. The
deployer does not give the code shares of a groupg di-
rectly to the replicas ofg. Instead, it distributes the shares
to a groupKg of guardianhosts that it assigns tog, such
that only one of the codes can be reconstructed as long
as a bounded number of guardian hosts are faulty. The
guardians can be drawn from the setR of evolving repli-
cas, some other set of hosts at the deployer’s disposal or
both.

A group of guardians forms a type of Byzantine quo-
rum system [37], which has low message and computa-
tional complexity. A guarded group can get the shares

it needs in a single message round, since all guardians
can be contacted concurrently and the guardians do not
communicate amongst themselves. The per-group mes-
sage complexity ofO(|Kg|) and minimal addition to piece
data (roughly 20-30 bytes per guardian) means thatlarge
guardian groups are practical, larger than what may be
practical for application replica groups in general. As-
suming an overall proportionp of evenly distributed faulty
hosts, the probability that a guardian is faulty and its
guarded group is compromised ispF+1. We note that the
number of guardians in each guardian group can be tai-
lored to the fault-tolerance level of the guarded group, e.g.
by assigning a greater number of guardians to less fault-
tolerant groups. We also note that if a deployer only re-
leases the guardian identities at the start of an upgrade,
the time period for an attacker to compromise a sufficient
number of them is limited, as compared to compromising a
well-known and slowly changing application replica group.

In our modified approach, the deployer chooses for
each groupg ∈ G a setKg of guardians, such that|Kg| =
3F +1, whereF is the number of faulty guardians to toler-
ate. The deployer breaks the group secret codesg of g and
cancellation codec into shares using a(k, n) secret-sharing
scheme withk = 2F +1 andn = 3F +1. The deployer in-
cludes in each piece∆g of each groupg, for each guardian
k of Kg, a tuple(ak, D(sk

g), D(ck)). Hereak is the net-
work address of guardiank while sk

g andck arek’s share
of sg andc, respectively. A guardiank gets, for each group
g that it guards, the pair(sk

g , ck) of its shares of the group
secret and cancellation code ofg, respectively.

When a groupg wishes to accept or reject an up-
grade, it sends out an operation requestGetShare() to
eachk ∈ Kg, passing inD(sk

g) or D(ck), respectively.
If a guardiank has a share corresponding to the digest,
it takes it as proof thatg is calling and returns the share,
otherwise it ignores the request. A correct guardian, how-
ever, only ever returns a group’s group secret code share
or cancellation code share,never both. If at mostF of the
3F +1 guardians are faulty, then (1) a group can always get
enough shares of one type of code, since there are at least
2F + 1 correct guardians and (2) a compromised group
cannot get enough shares to reconstruct both codes, since
it would have to contact some two guardian sets of size
2F + 1. These would have at least one correct guardian
in common, which would refuse to release both types of
shares.

Guardians can also be used to accelerate commit or
abort diffusion. Groups pass their reconstructed codes to
their guardians which pass them on to their guarded groups.
The topology and redundancy in connectivity of guardians
and groups can be arranged as to ensure rapid and robust
diffusion of codes throughoutG.

6 Conclusions
We have presented an algorithm for dynamically, atomi-
cally, securely and efficiently upgrading a large number
of distributed replica groups in SWFTI, an application



infrastructure that tolerates Byzantine faulty replicas and
compromised groups. Our algorithm confers the same level
of survivability on upgrade installations as is provided for
applications running within the infrastructure, while main-
taining high availability.

We are currently implementing our algorithm, as part
of the prototype implementation of SWFTI. This will en-
able experimental validation of its performance and scala-
bility.
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