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Abstract
Mission-critical services must be replicated to guaran-

tee correctness and high availability in spite of arbitrary
(Byzantine) faults. Traditional Byzantine fault tolerance
protocols suffer from several major limitations. Some pro-
tocols do not support interoperability between replicated
services. Other protocols provide poor fault isolation be-
tween services leading to cascading failures across organi-
zational and application boundaries. Moreover, traditional
protocols are unsuitable for applications with tiered ar-
chitectures, long-running threads of computation, or asyn-
chronous interaction between services.

We present Perpetual, a protocol that supports Byzantine
fault-tolerant execution of replicated services while enforc-
ing strict fault isolation. Perpetual enables interaction be-
tween replicated services that may invoke and process re-
mote requests asynchronously in long-running threads of
computation. We present a modular implementation, an
Axis2 Web Services extension, and experimental results that
demonstrate only a moderate overhead due to replication.

1 Introduction
Complex distributed applications combine the function-

ality of services from different providers to perform high-
level tasks. Mission-critical services shared by multiple ap-
plications must guarantee correct execution and availability
in spite of failures. Fail-stop failures, such as host crashes,
can be masked using redundant hosts. Achieving Byzantine
Fault Tolerance (BFT) [1] requires a higher degree of repli-
cation1 since failures may be caused by malicious attacks
and arbitrary software or hardware errors. Recent research
has yielded practical algorithms [2–5] for Byzantine fault-
tolerant execution of passive2 services.

Replicated shared services must ensure fault isolation
between applications by preserving safety (consistent state
among non-faulty replicas) and liveness (eventual execu-
tion of correct requests) even when interacting with com-

13f+1 state machine replicas are needed to tolerate f Byzantine faults.
2Passive services modify their state only in response to external calls.

promised3 services. Consequently, mission-critical services
require an execution environment that (1) enables interac-
tion between replicated services with different degrees of
replication while (2) guaranteeing both safety and liveness.

Prior BFT protocols [2–11] have failed to gain traction
due to several major limitations. Some protocols [2–5,9,10]
only allow replicated target services to be accessed by un-
replicated callers. A few [6–8, 11] support interaction be-
tween replicated services. However, no prior protocol guar-
antees both safety and liveness of replicated calling services
if target services are compromised. Moreover, prior pro-
tocols support BFT replication only for passive services.
Service oriented architectures (SOA) driven by orchestra-
tion (See Section 2.2), however, require support for services
with long-running active threads. Application developers
increasingly use asynchronous invocation and processing to
enable calling services to issue requests in parallel and tar-
get services to start processing new requests before previous
requests have been fully processed. No prior protocol sup-
ports asynchronous invocations from replicated callers and
only a few support asynchronous processing at replicated
target services. Moreover, prior protocols enforce deter-
minism in applications by precluding access to host specific
functions such as local clock queries. Section 3 describes
further limitations of existing BFT protocols.

We address these concerns with Perpetual, a practical
algorithm for Byzantine fault-tolerant replication of deter-
ministic services. Perpetual supports interaction between
services with different degrees of replication. We enforce
strict fault isolation between services ensuring both safety
and liveness in spite of Byzantine faults. Perpetual supports
long-running active threads of computation as well as asyn-
chronous invocation and processing resulting in improved
performance and flexibility over prior protocols.

We build upon Perpetual to present Perpetual-WS, mid-
dleware that augments the Apache Axis2 [12] Web Ser-
vice execution environment with a Byzantine fault-tolerant
transport module and an API suitable for asynchronous in-

3A compromised service has more than f faulty replicas.



vocation and processing. Our benchmark evaluations show
that Perpetual-WS scales well to large replica groups and
incurs only a modest overhead when used to replicate Web
Services that perform non-trivial computation tasks.

The rest of this paper is organized as follows. Section
2 presents relevant background. Section 3 describes unique
properties of Perpetual in the context of related work. The
Perpetual and Perpetual-WS programming models are pre-
sented in Section 5. The architecture and implementation
details are discussed in Sections 6 and 7. Section 8 presents
macro and micro benchmark evaluations of Perpetual-WS.
We conclude in Section 9 with a discussion of future work.

2 Background
Perpetual builds upon the Castro-Liskov Byzantine fault

tolerance (CLBFT) [2] algorithm for passive services. We
present background on CLBFT, Web Services, and Axis2.

2.1 Castro-Liskov BFT

CLBFT supports passive deterministic BFT services that
interact only with unreplicated callers. CLBFT services re-
quire 3f + 1 replicas to tolerate Byzantine faults in up to
f replicas. CLBFT also requires messages to be eventually
delivered (possibly through retransmissions).

In CLBFT, when a caller sends a request to a designated
primary replica at a target service, the primary assigns a se-
quence number to the request and forwards it to other repli-
cas in a pre-prepare message. Since the primary may be
faulty, the replicas send a prepare message to one another
to verify they all received the same request and sequence
number. Upon receiving 2f prepare messages matching the
pre-prepare it received from the primary, a replica sends a
commit message to all replicas. When a replica has match-
ing commit messages from 2f + 1 replicas, it executes the
request and sends the result to the caller. Upon receiving
f + 1 matching replies, the caller accepts the result.

If a caller times out waiting for a reply (e.g., due to a
faulty primary), it sends the request directly to all target
replicas. If a replica has not yet received a matching pre-
prepare, it forwards the request to the primary and starts a
progress timer. If progress under the current primary is un-
satisfactory, the replicas switch to a new primary in a view
change [13] operation. Since view changes are expensive,
progress timers adapt to prevent frequent view changes.

Other relevant aspects of CLBFT are summarized in the
technical report version of this paper [14].

2.2 Web Services

Web Services use a two-tier model, in which a caller
sends a SOAP [15] message to a target Web Service and
expects a reply. In practice, the processing of a request
may span multiple Web Service tiers across organizational
boundaries. For example, when an end-user makes a credit
card transaction at an online store, the store Web Service

contacts a payment gateway which in turn contacts a bank
before authorizing the purchase.

Large enterprise applications are increasingly built by
composing Web Services using a Service Oriented Archi-
tecture (SOA) [16]. Unlike in tiered applications, where
calls to one tier are embedded within another tier, Web Ser-
vices in SOA applications typically provide unassociated
sets of functionality. Applications depend on orchestrators
that actively execute rules specifying how data flows from
one Web Service to another to complete overall tasks. Stan-
dards such as the Business Process Execution Language
(BPEL) and BPEL engines (e.g., Apache ODE [17]) facili-
tate the creation and execution of SOA applications.

When a SOAP message is sent to a Web Service syn-
chronously, the caller blocks until it receives a reply mes-
sage. If the target Web Service is slow to respond, the caller
may be blocked needlessly. As a result, asynchronous mes-
saging, in which callers send SOAP messages to target Web
Services and continue to execute application logic while
waiting for a response, is becoming increasingly popular.
New standards (e.g., WS-Addressing [18]) and message ex-
change patterns (MEP) (e.g., conversational Web Services
[19]) have emerged to facilitate asynchronous messaging.

2.3 Apache Axis2

Apache Axis2 [12], a modular open source implemen-
tation of SOAP [15], provides API level support for SOAP
messaging. Client applications pass messages to the Axis2
Engine through the Client API. The Axis2 Engine contains
a customizable OUT-PIPE that holds a series of handlers that
may augment the message. Once a message has passed
though the OUT-PIPE, it is handed to the TransportSender.
Different implementations of TransportSender may use dif-
ferent protocols (e.g., HTTP, HTTPS, SMTP) to send the mes-
sage to a matching TransportListener at the receiver.

When a message is received by a TransportListener, it is
sent to a MessageReceiver though the customizable IN-PIPE
in the Axis2 Engine. At a server, the MessageReceiver may
invoke operations and send results back. At a client, the
MessageReciver may return results to a thread blocked on
a synchronous call or invoke a Callback object to complete
an asynchronous call.

3 Contributions and Related Work
Building upon our previous work [20], we make the fol-

lowing contributions: (1) a version of the Perpetual algo-
rithm that supports asynchronous invocation and process-
ing, (2) a prototype implementation of Perpetual, and (3)
the Perpetual-WS extension to support Axis2 Web Services.
Figure 1 summarizes our work in the context of related
work. In particular, we compare Perpetual to the work of
Fry and Reiter (FR) [6], Immune [7], BFT-DNS [8], SWS
[11], Thema [9], BFT-WS [10], BASE (CLBFT), [21] and
the work of Yin et. al. [22] .
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Unreplicated caller – replicated target * * * * * * * * * 
Replicated caller - unreplicated target * * * * * *    
Replicated caller – replicated target * * * * *     
Fault isolation (Replicated caller safety) *  * *      
Fault isolation (Replicated caller liveness) *         

Long-running threads *         

Asynchronous invocation *         

Asynchronous processing *       * * 

Host-specific information *       *  

Fast authentication (MAC only) *     *  *  
Web Services support *    * * *   

Modular implementation *      *   

!
Figure 1. Comparison of BFT protocols

Interaction between replicated services: Perpetual, FR, Im-
mune, BFT-DNS, and SWS enable interaction between ser-
vices with different degrees of replication. Thema and BFT-
WS allow replicated services to process requests from un-
replicated callers. Thema also allows replicated services to
issue calls to unreplicated services. However, Thema and
BFT-WS do not support replicated-to-replicated calls.

Fault isolation: Compromised target services may not re-
spond to callers or send different results to different call-
ing replicas. For liveness, the calling replicas may have
to deterministically abort the request. For safety, the call-
ing replicas may have to deterministically choose a sin-
gle result. Perpetual guarantees the safety and liveness of
all non-faulty services even when interacting with compro-
mised services. Immune and BFT-DNS guarantee safety but
not liveness while FR, Thema, and SWS guarantee neither
safety nor liveness when target services are compromised.

Long-running threads of computation: In all protocols, the
service being replicated must be deterministic. However,
prior protocols require that replicated services be passive as
well. Perpetual only requires that the application be single
threaded, meaning that active processes such as orchestra-
tion can occur within a replicated Web Service application
in addition to the processing of external messages.

Asynchronous invocation: Prior protocols only support syn-
chronous invocations by replicated callers, leading to need-
less blocking at callers. In contrast, Perpetual enables repli-
cated callers to complete requests asynchronously so that
they may perform other tasks while waiting for results.

Asynchronous processing: In most prior protocols, the exe-
cution of incoming requests is serialized. However, services
may have to issue requests to other services and wait for re-
sults while processing external requests. Perpetual allows
services to process later requests (or perform internal active
computations) while waiting for the required results.

Host-specific information: Applications may utilize host
specific information (e.g., local clock values, timestamps,
and random numbers). Instead of enforcing determinism by

precluding access to such information, Perpetual provides
methods that return consistent values on all replicas.

Cryptographic overhead: Thema and Perpetual use mes-
sage authentication codes (MAC) [23] to authenticate mes-
sages while BFT-DNS uses digital signatures [24] for some
messages. Immune, FR, SWS, and BFT-WS use digital sig-
natures for all messages. MACs can be calculated three or-
ders of magnitude faster than digital signatures.

Modular implementation: In our implementation, low-level
cryptographic and transport details are encapsulated within
modules that can be easily replaced. BFT-WS also takes ad-
vantage of the modularity in Axis2. In contrast, the CLBFT,
Thema, and BFT-DNS implementations are tightly coupled
with UDP a transport and the SFS [25] cryptographic li-
brary. Since Immune only supports BFT CORBA services,
it is also tightly integrated within the CORBA framework.

4 Perpetual Algorithm
We describe the Perpetual algorithm in terms of a target

service t, comprised of nt = 3ft + 1 replicas t1, . . . , tnt ,
and a calling service c comprised of nc = 3fc + 1 replicas
c1, . . . , cnc

, where ft and fc are the upper bounds on the
number of faults tolerated by the target and calling services.

Each replica i (target or calling) is composed of a voter
vi and a driver di. The voters and the drivers form two dis-
tinct replica groups with the voter and driver of a particular
replica co-existing on a single host. Voters of a service s use
CLBFT to run agreement on replies to requests originated
by s as well as external requests sent to s by other services.

Each driver di contains an executor ei, a black box cap-
turing application behavior. Executors model determinis-
tic applications that: (1) request operations on target ser-
vices and process their replies and (2) execute operations
requested by calling services and sending back replies. The
requests may be synchronous or asynchronous.

We assume that message digests are collision free and
that our cryptographic primitives cannot be subverted by an
attacker. As in CLBFT, we also assume that messages are
eventually delivered to their destinations if retransmitted af-
ter exponentially increasing timeouts.

We illustrate the algorithm in Figure 2 by tracing the ex-
ecution of a request in the non-faulty case. When the ex-
ecutor ej at calling replica cj requests an operation to be
performed by t, the driver dj sends the request to the voter
primary of t (1). The voter primary of t waits for at least
fc +1 matching requests before starting CLBFT to agree on
the request (2). Upon agreement, each voter vk of t passes
the request to its co-located driver dk (3) using the local
event queue. Executor ek at dk dequeues the request, exe-
cutes it, and sends the result back to voter vk via driver dk

(4). Note that ek is not required to finish executing a request
before starting the execution of the next request. For exam-
ple, ek may deterministically choose to start the execution



Calling drivers send request to 
target voter primary.

Target voters forward reply to 
responder. 

Calling drivers forward result 
to calling voter primary.

Calling drivers learn the result 
from co-located calling voters.

Target voter replicas run 
CLBFT to agree on request 

Calling voters run CLBFT to 
agree on the result.

1.

2.

5.

7.

8.

9.

d1 vP      d2 v2    d3 v3       d4 v4             d1 vP      d2 vR    d3 v3       d4 v4             

  c1         c2       c3           c4                t1           t2        t3            t4 Stages of the Algorithm

Target voters agree on request

Target voters pass the request 
to co-located target drivers 

3.

Target drivers calculate and pass 
result to co-located target voters 

4.

Responder sends reply bundle 
to calling drivers.

6.

Calling voters agree on result

Figure 2. The stages of a normal (non-faulty) request. Ellipses show passive voters (v) and rect-
angles show active drivers (d) of service replicas. Both primaries (P) and the responder (R) of the
target voter group are also shown. Source: WUCSE-2007-50 [26]

of the next request while waiting for replies to external re-
quests issued during the execution of the previous request.

To avoid the nt ∗ nc messages that would result from
having all voters of t send replies to all drivers of c, each
voter of t forwards its reply to a particular voter of t, known
as the responder (5). The responder, specified in the origi-
nal request messages from the drivers of c, collects ft + 1
matching replies and forwards the reply bundle (including
all authenticators) to each driver of c (6). When a driver dj

of calling replica cj receives this message, it authenticates
the reply bundle and forwards the result to the primary of c’s
voter group (7) that uses CLBFT to agree on the reply (8).
Once agreement has been reached, each voter of c enqueues
the result in the local event queue (9). When an executor
of c deterministically decides to consume the result of a re-
quest, it pulls that result from the event queue, blocking if
necessary until a result for that request is available.

4.1 Fault Handling

Driver dj of calling replica cj starts an operation timer
upon sending a request to t. If the timer expires before a
reply is received, there are three possible explanations: (1)
The voter primary of t is faulty and discarded the request;
(2) The responder of t is faulty and didn’t send the reply to
some or all of the calling replicas; or (3) The timeout value
is too low for current network conditions.

When dj times out waiting for a reply, it re-sends the re-

quest to all nt voters of t. If a voter vk of target replica tk
receives at least fc +1 matching requests, it checks whether
its primary has started agreement on the request. If not, vk

forwards the request (including the bundle of fc + 1 sig-
natures) to its primary. It also starts a progress timer, as
defined in CLBFT. Once ek has successfully executed the
operation (potentially under a new primary at t), voter vk

multicasts the reply to all drivers of c. If no more than ft

target replicas are faulty, each driver of c eventually receives
at least ft + 1 matching replies, as in the normal case.

4.1.1 Compromised Calling Group
If c is compromised (more than fc faulty replicas), it should
not be able to violate the correctness of t. Since the voters
of t only start agreement upon receiving matching requests
from at least fc + 1 different replicas of c, the case of a
compromised calling group c reduces to the case of a single
faulty unreplicated caller in CLBFT, and safety is ensured.

4.1.2 Compromised Target Group
If t is compromised, it should not be able to violate the cor-
rectness of c nor inhibit its progress. Replicas of c indi-
vidually accept replies from t upon receiving ft + 1 valid
signatures for it, but t could send quorums of replies with
different result values to different replicas of c. If at least
fc + 1 replicas of c receive the same valid reply, then that
reply may eventually be voted upon by the voters of c and



interface BFTAdapter (Perpetual): interface MessageHandler (Perpetual-WS): // Messaging APIs
Invocation sendAsyncReq(Message req); void send(MessageContext req); // Asynchronous request
Invocation receiveReply(); MessageContext receiveReply(); // Fetch next reply
MessageBuffer sendSyncReq(Message req); MessageContext sendReceive(MessageContext req); // Synchronous request
Message receiveRequest(); MessageContext receiveRequest(); // Fetch next request
void sendReply(MessageBuffer rep); void sendReply(MessageContext rep); // Send reply

MessageContext receiveReply(MessageContext req); // Fetch reply for request

Figure 3. The Perpetual and Perpetual-WS APIs provide messaging support.

placed in the event queue for consumption by all executors
of c. However, if t does not send the same reply to at least
fc+1 replicas of c, the executors of c may deadlock waiting
for a reply that will never arrive. To preserve liveness, we
allow each driver of c to send an abort request to the voter
primary of c. If at least fc +1 calling replicas send abort re-
quests, then the abort request may be voted upon and placed
in the event queue instead of a reply from t.

Further details on fault handling, checkpointing, garbage
collection, and recovery as well as the formal I/O automata
[27] model are included in the technical report version [14].

5 Perpetual Programming Model
Perpetual supports applications implemented using a sin-

gle ongoing thread of computation. We do not distinguish
between callers and targets. Instead, applications deployed
using Perpetual may (1) issue requests, (2) query for incom-
ing requests, (3) query for incoming replies, and (4) issue
replies. The Perpetual API shown in Figure 3 supports this
programming model. Further details of all interfaces (in-
cluding checkpointing, garbage collection, and state trans-
fer) are included in the technical report version [14].

5.1 Perpetual API

A service may send asynchronous requests us-
ing the SendAsyncReq method that returns an
Invocation object. Invocations implement the
java.util.concurrent.Future interface, parame-
terized by MessageBuffer4. The caller may call get

on the Invocation at a later time to get the results of
the operation. If the result is not yet available, the call
blocks until it arrives. If the operation is aborted, an
OperationAbortedException will be thrown.

An application may attempt to abort a pending request by
calling cancel on the corresponding Invocation. Call-
ing get with a timeout value will either return the opera-
tion’s result or abort it after waiting for at least that amount
of time. It is important to note that calling cancel only
signals the preference for a request to be aborted. The ul-
timate fate of a request is determined by agreement within
the voter group. Hence, it is necessary to call get on every
Invocation to learn its outcome.

The method SendSyncReq implements synchronous
calls for convenience. For fully asynchronous calls a caller

4MessageBuffers wrap immutable java.nio.ByteBuffers.

may request the next available result for any pending re-
quest using the receiveReply method. The method re-
turns the next available reply from the event queue, block-
ing, if necessary, until some reply is available.

A service that accepts incoming requests may use the
receiveRequest method to obtain the next external re-
quest and the sendResult method to send replies.

5.2 Perpetual-WS API
Passive deterministic Axis2 Web Services that only use

synchronous messaging can be executed within Perpetual-
WS without modification. However, Axis2 uses multiple
helper threads to support asynchronous messaging and does
not guarantee deterministic thread scheduling. Changing
the behavior of non-deterministic software to be determin-
istic in a way that is transparent to the software is beyond
the scope of this paper. Instead, we currently support the
MessageHandler API shown in Figure 3.

The caller is required to provide the payload
and destination information encapsulated within a
org.apache.axis2.context.MessageContext ob-
ject. The construction of the MessageContext must
follow the same rules as when sending a message using the
Axis2 OperationClient API.

Since MessageContext does not implement
java.util.concurrent.Future, we include the
receiveReply(MessageContext request) method
to enable blocking for a result of a particular request. To
abort a request in Perpetual-WS, the caller must specify a
timeout within the MessageContext of the request.

5.3 Utility Methods
The Perpetual API provides several utility methods.

When currentTimeMillis or timestamp is called, a
request is issued to the voter group to obtain a consistent
value. The primary of the voter group suggests a value to
be agreed upon by all the voters. Calls to random return
java.util.Random objects with an agreed upon seed.

6 Perpetual Architecture
We describe the Perpetual architecture and the Perpetual-

WS extension by tracing the execution of a request issued
by an Axis2 Web Service during fault-free execution, as
shown in Figure 4. We omit interfaces related to check-
pointing, state transfer, and garbage collection in order to
reduce complexity. Further details on the content of mes-
sages may be found in the technical report version [14].
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Figure 4. The Perpetual architecture and the Perpetual-WS extension: High-level modules (darkly
shaded on the left), interfaces (rectangles at module edges), algorithm specific sub-modules (rect-
angles with rounded-edges), and Axis2 specific sub modules (shaded rectangles with a gradient)
are shown. The numbered arrows indicate the flow of messages during fault-free execution.

6.1 Modular Interaction

The calling logic issues a request to a target Web Service
by passing a MessageContext to the MessageHandler to
initiate the request (1). The MessageContext is then sent
through the Axis2 Engine to the PerpetualSender that im-
plements the Axis2 TransportSender interface. To sup-
port non-blocking calls, the sending thread must not block
waiting for a reply from the Perpetual layer. Hence, the
Message object (created using the MessageContext) is
passed to the driver using the non-blocking sendAsyncReq
method of the BFTAdapter API (2).

The Perpetual Driver Algorithm uses the Message ob-
ject to create a Target Request message, which is passed to
the ChannelAdapter module using the OutputChannel inter-
face (3). The ChannelAdapter adds authentication data and
sends the resulting message to the voter of the target pri-
mary using an encrypted channel.

The ChannelAdapter at the target primary receives and
authenticates the message before passing the enclosed Tar-
get Request up to the VoterEngine module, using the Chan-
nelListener interface. The Perpetual Voter Algorithm en-
capsulated within the VoterEngine collects at least fc + 1
(where c is the caller) matching Target Requests before
sending the Target Request to the BFTEngine module us-
ing the BFTMessageListener interface (4). Once CLBFT

agreement has been reached on the Target Requet (5, 6),
the BFTEngine passes the Operation to the Application
module through the BFTApplication interface (7). The
Perpetual voter logic returns the Target Operation back to
the CLBFTEngine, which wraps the Target Operation in
a CLBFT Reply and passes it to the VoterEngine through
the VoterMessageChannel interface (8). The CLBFT Reply
is intercepted and the Target Operation contained within it
is extracted and forwarded to the DriverEngine using the
VoterQueueListener interface (9).

The PerpetualReceiver fetches the Message object for
the Target Operation, extracts the MessageContext and
passes it to the MessageHandler through the Axis2 Engine
(10). To support asynchronous processing of incoming mes-
sages, the MessageContext is then placed in another FIFO
queue. Incoming requests are dequeued by the thread that
executes target logic through the receiveRequestmethod
of the MessageHandler API.

When it is ready to send a reply, the target logic
calls the sendReply method of the MessageHandler, pass-
ing in the MessageContext of the reply (11). The
MessageContext is then sent to the Transport layer
through the Axis2 Engine. The PerpetualSender constructs
a Message object and passes it to the DriverEngine through
the sendReply method of the BFTAdapter API (12).

The DriverEngine uses the Message object to construct
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a Target Reply message and sends it to the ChannelAdapter
through the OutputChannel interface (13) to be sent (possi-
bly via a designated responder) to the calling drivers.

Each DriverEngine at the caller collects at least ft + 1
(where t is the target service) matching Target Replies be-
fore sending a Vote Request containing the Result to the
primary of the calling voter group (14). Stages (14) through
(20) mirror stages (3) through (9) exactly.

The PerpetualReceiver fetches the Message for the Re-
sult, extracts the MessageContext, and passes it to the
MessageHandler, through the Axis2 Engine. If the original
request was synchronous, the MessageHandler returns the
reply MessageContext to the blocked caller thread (12).
Otherwise, the MessageContext is placed in a FIFO queue
to be fetched by the caller thread.

7 Implementation
Implemented in Java, the Perpetual code base is orga-

nized into three libraries containing the code for CLBFT,
Perpetual, and Communication. All the code (including the
Perpetual-WS extension library) is available online [28].
The CLBFT Library: The BASE implementation of CLBFT
is not modular, coupling the CLBFT algorithm with low-
level (connections, cryptography) concerns5. Therefore, we
implemented CLBFT in Java abstracting away cryptogra-
phy and network functions through interfaces.
The Perpetual Core Library: The Perpetual Core library
contains the implementations of the DriverEngine and
VoterEngine modules. As with the CLBFT library, cryp-
tography and network functions are delegated elsewhere.
The Communications Library: The ChannelAdapter (CA)
module contained in the Communications library guaran-
tees exactly-once (possibly out-of-order) delivery of mes-
sages between correct replicas even when connections
break and are re-established. Replicas are identified with
RSA public keys, which are used to establish SSL sessions.
The CA includes a MAC authenticator [23] for each end-
destination recipient replica of a message to support for-
warding without digital signatures.
The Perpetual-WS Library: The Perpetual-WS library con-
tains the implementations of the PerpetualSender, Perpet-
ualReceiver, and the MessageHandler. In addition, the li-
brary contains a simple name service resolution mecha-
nism as described in the technical report version of this pa-
per [14].

5BASE also needs the discontinued SFS [25] library

8 Experiments

We conducted both macro and micro benchmark evalu-
ations of Perpetual-WS to ascertain the scalability and effi-
ciency of our implementation. As our macro-benchmark
we used an open source implementation [29–31] of the
TPC-W [32] web e-Commerce benchmark. For our micro-
benchmarks, we used a two-tier setting and measured the
throughput of the calling service.

8.1 TPC-W Benchmark

As shown in Figure 5, the TPC-W benchmark mod-
els a multi-tiered e-commerce application. The benchmark
measures the throughput of an online bookstore with 14
web pages in Web Interactions Per Second (WIPS). Remote
Browser Emulators (RBE) are used to simulate end-users.
The RBEs use different workloads to simulate user behav-
ior biased toward browsing, shopping, or ordering. When
using the ordering workload, approximately 10% of total
traffic received by the bookstore results in requests to an
external Payment Gateway Emulator (PGE).

Our setup mirrors the setup used to evaluate Thema [9].
All the RBEs executed within a single host with default set-
tings. The RBEs used the ordering workload to issue re-
quests to the bookstore Web Service over HTTP connec-
tions. The bookstore Web Service was deployed on another
host and used an Apache Tomcat Servlet engine and a (co-
located) MySQL database. Since the TCP-W implementa-
tion did not include a PGE, we changed the bookstore to
call a PGE Web Service implemented using Perpetual-WS.
The PGE calls another Perpetual-WS Web Service that sim-
ulates the actions of a credit card issuing bank. We utilized
four different configurations where the PGE and Bank Web
Services both executed in replica groups of varying size.
We disregarded the minimum execution time requirement
for the PGE to ensure that the effects of replication were
not masked. Both the PGE and Bank Web Services used
asynchronous messaging.

8.2 Micro-benchmarks

Our micro-benchmarks used a two-tier setting with caller
and target Web Services both implemented using Perpetual-
WS. Measurements were recorded at the calling Web Ser-
vice. We first measured the request throughput as the num-
ber of calling and target Web Service replicas was var-
ied. We then performed experiments to evaluate the ef-
fects of non-zero processing time and the performance gains
made by using asynchronous requests. To simulate null-
operations, we implemented a simple increment method at
the target Web Service. To simulate non-zero execution
time, we used digest calculations calibrated to take the re-
quired length of time. We measured time taken to complete
500 calls to calculate each data point. The first 20 measure-
ments were discarded to account for startup costs.
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8.3 Experimental Setup

All of our experiments were performed on a dedicated
Washington University testbed [33] made up of 2GHz
Opteron machines with 512 MB of RAM, connected via
a Netgear GSM7352S Gigabit Ethernet router (with the
ping tool reporting 78µs pairwise RTTs). All machines
ran RedHat Desktop 4 (kernel version 2.6.9-42.0.3.EL).
All tests used Java Runtime version 1.6.0 03 and the
RSA/RC4/MD5 SSL ciphersuite. For the TPC-W bench-
mark, we used MySQL Sever 5.1 along with the MySQL
Connector/J 5.1 JDBC driver and Tomcat 5.5.25.

8.4 Experimental Results

As seen in Figure 6, the effects of replicating the PGE
and Bank layers is minimal. Although not shown, we also
conducted the same experiments using different implemen-
tations of the PGE and Bank Web Services that used syn-
chronous requests instead. Overall, the asynchronous PGE
and Bank Web Services performed up to 4% better than the
synchronous versions. Since only about 10% of all requests

to the Bookstore resulted in calls to the PGE these gains
represent a significant improvement in performance.

As seen in Figure 7, the overhead of replication is con-
siderable when only null requests are considered. However,
the results show that the decrease in throughput as a per-
centage of total throughput also diminishes as we add more
replicas to make Web Services more robust. This argues
well for the scalability of Perpetual-WS.

Figure 8 shows the effect on throughput when incoming
requests take non-zero time to process, shown relative to
the case with no replication. We can see that as requests
take longer to process, the overhead of replication rapidly
decreases. For example, in the case of four replicas in both
the caller and target replica groups, the throughput increases
from 30% (of the no replication case) for null operations
to 73% when a request takes 6ms (typical database access
time) to process. These results justify the cost of Perpetual-
WS replication for real world applications.

Figure 9 shows the gain in throughput achieved by issu-
ing parallel asynchronous requests. With 4, 7, and 10 repli-



cas in both the calling and target Web Services, the through-
put increased by as much as 270%, 239%, and 246%, re-
spectively, when asynchronous messaging was used.

9 Conclusion
We plan to generalize the BFT Engine module to encap-

sulate BFT state machine replication algorithms [5] other
than CLBFT. We also plan to extend the capabilities of
Perpetual-WS to include execution of BPEL [34] processes
using the Apache ODE [17] execution engine.

We thank Charlie Wiseman and the rest of the ONL
team. The authors were supported in part by National Sci-
ence Foundation grants 0305954, 0618266, and 0722328.
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