Visual Specification
of Interprocess and Intraprocess Communication

T. Paul McCartney and Kenneth J. Goldman *
Department of Computer Science
Washington University
St. Louis, Missouri 63130

Abstract

We present a visual specification language for con-
structing distributed applications and their direct ma-
nipulation graphical user interfaces. Fach distributed
application consists of a collection of independent
modules and a configuration of logical connections that
define communication among the data interfaces of
the modules. QOur specification language uses a single
visual mechanism that allows end-users to define in-
terprocess communication among distributed modules
and to define intraprocess communication among o0b-
jects within a module. This visual language provides
a general encapsulation/abstraction mechanism and is
destgned to support dynamic change to the communi-
cation structure. User interfaces are completely de-
coupled from the module(s) they control.

1 Introduction

Distributed multimedia applications supported by
a global electronic infrastructure have tremendous po-
tential for providing users with customized communi-
cation and computation environments. These appli-
cations include remote collaboration, information and
resource sharing, and access to broadcast media (Fig-
ure 1). The future users of the infrastructure will vary
greatly in technical ability, ranging from novice users
to sophisticated expert users and programmers.

Since communication and computation require-
ments vary by context and change dynamically, it
is unlikely that system programmers will anticipate
the needs of all users. Therefore, empowering end-
users to create their own customized communication
and computation environments is an important chal-
lenge. Any successful approach to this problem will

*This research was supported in part by National Science
Foundation grants CCR-91-10029 and CCR-94-12711. E-mail:
paul@cs.wustl.edu and kjg@cs.wustl.edu

Live Board

o

Figure 1: Distributed multimedia applications

require a visual language that integrates distributed
application configuration and user interface construc-
tion. This will involve the integration of all aspects
of communication, from intraprocess communication
(e.g., creating constraints among graphical objects in
a display) to interprocess communication (e.g., es-
tablishing teleconferencing connections). This paper
presents a visual specification language for establish-
ing both intraprocess and interprocess communica-
tion using a uniform “connection” abstraction. In-
traprocess communication is achieved by connecting
attributes of simple and compound graphical objects
using constraints and grouping abstractions. Interpro-
cess communication (among diverse distributed mod-
ules) is accomplished by managing logical connections
among independent modules.

A single visual mechanism with a consistent seman-
tics 1s used for all aspects of communication. The user
thinks at a high level about “plugging together” the
components of a distributed multimedia application,
and i1s not concerned with the low level implementa-
tion details of such a system. The system is free to
make choices about how to implement the communi-
cation specified by each connection in the configura-
tion.

1.1 I/O abstraction

Our model of interprocess communication is called
I/0 abstraction [6]. Each module in a system has a
module boundary ! containing values (published data
structures) that may be externally observed and/or
manipulated. A distributed application consists of a
collection of independent modules and a configuration
of logical connections among the published values at
module boundaries. Whenever a module updates one
of its own published data items, communication occurs
implicitly according to the logical connections.

I/O abstraction communication is declarative,
rather than imperative. One declares direct high-level
logical connections among the data items of individ-
ual modules, as opposed to directing communication
within the control flow of the module. This makes im-
plicit communication possible. Qutput is essentially a
byproduct of computation, and input is observed pas-
sively, or handled by reactive control within a module.

This declarative approach simplifies application
programming by cleanly separating computation from
communication. Software modules written using 1/0
abstraction do not make explicit requests to establish
or effect communication, but instead are concerned
only with the details of the local computation. Ex-
posing the configuration allows the run-time system
to handle communication more effectively.

1.2 Objectives

We claim that the separation of computation from
communication achieved by I/O abstraction can form
the basis of tools that allow end-users to create so-
phisticated customized distributed applications from
computational building blocks. To support this claim,
this paper presents a visual language for specifying
the communication structure of a distributed appli-
cation. QOur visual language addresses all aspects
of communication, including interprocess communica-
tion among independent distributed modules, module
boundary declarations, and intraprocess communica-
tion among objects within a single module. Our treat-
ment of interprocess communication is completely gen-
eral, while our treatment of intraprocess communica-
tion concentrates on the specification of sophisticated
direct-manipulation graphical user interfaces that in-
teract with multiple independent modules in a dis-
tributed application.

1In other papers [6, 18] describing the I/O abstraction con-
cept, the data interface of an I/O abstraction module has been
called the “presentation.” Since this paper deals with interfaces
for visual languages, we use the term boundary in order to avoid
confusion with user “interfaces” and a visual “presentation.”

In the intraprocess communication area, we have
concentrated on the user interface construction prob-
lem because it is critical for supporting the kinds of
distributed multimedia application we envision. How-
ever, our connection oriented visual communication
language would also blend nicely with general pur-
pose visual computation languages based on dataflow
concepts, such as the “Show and Tell” system [11].

Our visual language is designed to support end-user
configuration of distributed multimedia applications
on top of The Programmers’ Playground, a software
library and run-time system we are developing to sup-
port the I/O abstraction programming model. The
user of our visual specification language does not need
to write any source code to establish communication
or know the details of how the communication works.

The specification of a GUI is created as an indepen-
dent module using a graphics editor. At run time, the
user establishes logical connections among the GUI
module boundary and the boundaries of other mod-
ules in the system in order to configure a complete
customized distributed application.

The development work is being conducted in the
context of an ATM network being deployed on the
Washington University campus [3].

1.3 Overview

The remainder of this paper is organized as fol-
lows. In Section 2, we provide an overview of re-
lated work. We present our visual communication
language in the context of an air traffic control ex-
ample introduced in Section 3. Section 4 discusses
visual specification of intraprocess communication. In
our case, intraprocess communication can be estab-
lished through constraints between graphics objects
or through data boundaries of encapsulated widgets
(created by an end-user through direct manipulation).
Section b describes visual specification of interprocess
communication between distributed modules through
data boundaries. Both intraprocess and interprocess
communication are specified with a connection ori-
ented visual abstraction. Communication and visual-
ization of data aggregates is also addressed. Section 6
discusses our current implementation status.

2 Related work

We are not aware of other visual specification lan-
guages that integrate all aspects of communication in
support of end-user construction of customized dis-
tributed multimedia applications with user-specified
graphical interfaces. In this section we highlight some

of the related work in the area of coordination lan-
guages for configurable distributed systems and in the
area of visual specification of user interfaces.

The purpose of a coordination language [5] is to
separate communication from computation in order to
offer programmers a uniform communication abstrac-
tion that is independent of a particular programming
language or operating system. The separation of com-
putation from communication permits local reasoning
about functional components in terms of well-defined
interfaces and allows systems to be designed by assem-
bling collections of individually verified components.

Coordination languages typically provide a struc-
tured configuration mechanism for specifying relation-
ships among program modules. For example, Dar-
win [13] is a configuration language for managing
message-passing connections between process ports in
a dynamic system. Processes are expressed in a sepa-
rate computation language that allows ports to be de-
clared for interconnection within Darwin. Conic, the
predecessor of Darwin, provides a graphical configu-
ration mechanism for establishing bindings among the
ports [12]. However, the modules of the system must
still be concerned with when to send or receive mes-
sages on these ports. In Polylith [15], a configuration is
expressed using “module interconnection constructs”
that establish procedure call bindings among modules
in a distributed system. CONCERT [19] provides a
uniform communication abstraction by extending sev-
eral procedural programminglanguages to support the
Hermes [17] distributed process model. PROFIT [10]
provides a mixture of data sharing and RPC commu-
nication through facets with data and procedure slots
that are bound to slots in other facets during compila-
tion. Extensions to PROFIT enable dynamic binding
of slots in special cases [8]. The Weaves system [7] pro-
vides a configuration mechanism based on dataflow.

The above systems adopt a given communication
model and concentrate on the configuration problem.
Here, we have taken a more comprehensive approach
by developing the configuration mechanism and com-
munication model (I/O abstraction) concomitantly, in
order to achieve a more effective separation of commu-
nication and computation.?

Much work has been done in the area of user in-
Here, we mention three sys-
tems that are representative of this paradigm. The
Thinglab system [2] uses multiway constraints to spec-
ify relationships between parts of a simulation graphi-
cal display. Thinglab represents early work in graphi-

terface construction.

?See the technical report version of [6] for a comparison of
I/O abstraction with other communication models.

TWA-101

TWA-422

USAIr-507

Delta-500

Figure 2: Air traffic control example application

cal constraint systems and provided the foundation for
many later systems. The Garnet system [14] provides
a toolkit which allows the user to construct interac-
tive graphical user interfaces using an object oriented
constraint based library. Garnet does not provide end-
users with graphical mechanisms for establishing rela-
tionships between the user interface and the applica-
tion that it controls. The RENDEZVOUS project [9]
concentrates on the separation of the user interfaces
from their applications. RENDEZVOUS is a tran-
sition from purely user interface oriented systems to
systems that attempt to decouple the construction of
the graphical user interface from their applications.

3 Example application

We present our visual communication language in
the context of a “toy” example of an air traffic control
system. The air traffic control system consists of three
communicating modules [1]: a radar module that gets
information about the position and identity of the set
of current airplanes, a radio module that is used to co-
ordinate audio communication between the pilots and
the air traffic controller, and a graphical user inter-
face (GUT) module that displays the current state of
the airplanes as shown in Figure 2.

The air traffic controller sees on the display a cir-
cular area surrounding a centered “airport”. The area
contains a number of airplanes that are currently ap-
proaching or leaving the airport. An airplane is repre-
sented using a wedge shape labeled with the flight ID.
The length of the wedge is used to represent relative
speed of the airplane (i.e. the longer the wedge, the
faster the airplane is moving). Over time, the position

Drawing Command Palette

Widget Builder

File ‘ N
A

|

b O,

Name

Data Boundary Main Drawing Area

Figure 3: Graphical user interface editor

and length of the airplanes are updated to display the
current state. The user of the GUI can communicate
with the pilots through audio radio channels. By click-
ing on airplanes with the mouse, a “focus” set of flight
IDs 1s selected. This action establishes the subset of
pilots with whom the user wishes to speak.

3.1 Task outline

We illustrate our visual language in the context of
a graphical editor that we are developing. Using this
editor, we will describe in a bottom-up fashion how
one can construct the air traffic control application.
First, we define a graphical widget to represent an
airplane. This involves drawing the widget, creating
constraints on the shape of the widget, and establish-
ing a data boundary encapsulation through which the
widget can be manipulated.

Next, we define the air traffic control GUI. This
involves drawing the GUI and establishing a data
boundary through which the GUI module communi-
cates with external distributed applications. This data
boundary includes an audio channel between the pi-
lots and the controller, a set of current airplane tuples,
and a set of currently selected planes. To visualize the
set of airplanes, we define an aggregate mapping from
a set of airplane tuples to the coordinate system of the
GUI. Similarly, we create an aggregate mapping from
selected airplanes of the GUI to external modules.

Finally, we configure the air traffic control module
with the radar and radio modules with logical connec-
tions between data values in the modules’ data bound-
aries. This configuration, performed at run-time with
a visual user interface, completes the construction of
the distributed application.

The editor consists of three parts (see Figure 3).

The body of the window is used for drawing wid-
gets or graphical user interfaces. The top of the win-
dow contains a palette of drawing commands includ-
ing basic graphics objects (e.g., rectangles, ovals) and
user/system defined compound graphics objects (i.e.,
widgets). Among these widgets are imaginary align-
ment objects such as a “perpendicular” object used
maintain a right angle between two lines. The left
side of the editor window contains the data boundary
portion of editor. For widgets, the data boundary de-
fines the set of attributes that can be used externally
by the containing user interface to control the widget
appearance. For graphical user interfaces, the data
boundary defines the set of data structures that can
be externally manipulated by external 1/O abstraction
modules.

4 Intraprocess communication

This section describes how users create simple and
compound objects of a user interface and define rela-
tionships among those objects. Relationships include
equality constraints and encapsulation of graphics ob-
ject groups by means of a data boundary.

4.1 Graphics primitives and attributes

Each graphics object has a set of attributes whose
values define not only its visual appearance but also
other state information such as whether or not an ob-
ject 1s “selected”.

Attributes of a graphics object are visually repre-
sented as tags that are positioned in appropriate places
relative to the graphics object (Figure 4). The user
can establish relationships (e.g., constraints) among
the attributes of the graphics objects by using the tags
as data ports for user interaction. For novice users,
tags might be labeled textually, but the text could be
hidden for experienced users to avoid clutter.

4.2 Widgets

A widget is a compound graphics object that is a
grouping of graphics objects with a subset of exposed
attributes. One may think of a widget as a “module”
of graphics shapes with a “data boundary” of exter-
nally readable/writable attributes. The values of the
attributes in a widget’s data boundary are the only
means of controlling or viewing the state of the widget
externally. Widgets are created visually by end-users.
As with other graphics objects, the external attributes
of a widget can be viewed, revealing tags which can
be used in forming connections to the widget.

A widget can have multiple visual representations
that we call alternatives. For instance, a widget may

left-top
height
length
right-bottom
(A)
left-top
-m

length

right-bottom \

(B)

end

(©)
Figure 4: A) Rectangle and line with exposed at-
tributes. B) Creating constraints between the rect-
angle and line. C) Result of satisfying the constraints.

have an alternative for its “selected” representation
in addition to its conventional representation. KEach
alternative may have a set of exposed attributes. The
currently displayed alternative 1s selected by means of
a standard “alternative” widget attribute.

For example, an airplane in our air traffic control
example can be defined as a widget. With the mouse,
the user draws the outline of the polygon consisting
of four points, just as in other graphics editors such
as MacDraw or zfig. A textual name label for the
identification of the airplane is created and positioned
under the polygon (Figure 3).

4.3 Spaces

A space is a coordinate system that contains graph-
ics objects. To simplify user interface construction,
our visual language allows end-users to define multiple
spaces with independent coordinate units, origins, and
clipping regions. Aggregate values such as sets and
arrays can be mapped onto the space or mapped from
the space to an external variable in the data boundary
with a visual mechanism (see Section 5.2).

4.4 Constraints

Constraints are a simple, yet powerful, way to spec-
ify relationships among graphical objects. Establish-
ing an equality constraint between graphical objects is

|
|
AD|
|
|
|

(o]

Figure 5: Imaginary object constraints

accomplished by simply making a connection between
a pair of exposed attributes of two graphical objects.
Figure 4b and 4c show how a user would specify a line
to be constrained between the corners of the rectangle.

However, many desirable constraint relationships
cannot be established by direct equality constraints.
For this reason, our specification language supports
the concept of “imaginary objects.” Imaginary objects
are invisible shapes which serve as an abstraction for
defining indirect constraints between attributes. Any
graphics primitive or widget can serve as an imaginary
object. The attributes of an imaginary object can be
constrained with the attributes of other graphics ob-
jects. In this way, users create indirect constraints be-
tween graphics objects visually using the same mech-
anism used to create direct constraints between the
attributes of visible objects.

To define the shape of the airplane, we create imag-
inary line segments AD, BC, and M B, where M is the
midpoint of AD (note: the lines are not actually la-
beled in the editor). Then we constrain M B and BC'
to be co-linear and constrain AD and M B to be per-
pendicular using a “perpendicular” imaginary align-
ment object which is predefined in the widget library
(see Figure 5). All relationships are declared visually.

4.5 Intraprocess data boundaries

Once the component shapes and internal con-
straints of a widget are specified, 1t 1s “packaged” for
later use in a graphical interface. When used, the in-
ternal details of the widget are hidden from the user.
The appearance of the widget is controlled strictly
through its data boundary of “exposed” attributes. In
our graphics editor, the widget boundary is declared
by establishing connections between attributes of the
widget and the data boundary area of the editor. Each
connection creates a data boundary attribute that is
shown as a rectangle containing the user-specified at-
tribute name.

In the air traffic control example, the position, ori-
entation, length, and name of each airplane is de-

Widget Builder
N~

M Current
D Previous
Flight
| = Name

Figure 6: Publishing external widget attributes

termined by an external data source (recall that the
length of an airplane is proportional to its speed). We
create three widget attributes current, previous, and
flight in the data boundary of the widget. Current
represents the current position of the airplane; previ-
ous represents the previous position of the airplane;
flight represents the flight ID of the airplane. To sat-
1sfy position, orientation, and length requirements, we
can think of the current position of the airplane being
at the “nose” of the airplane; the previous position of
the airplane is at the “tail” of the airplane. Given the
current position and previous position of the airplane,
the orientation and length requirements are satisfied.
The greater the difference between the current posi-
tion and the previous position, the greater the distance
between the nose and the tail of the airplane widget.

We publish attributes of the airplane widget as
shown in Figure 6. When the airplane widget is instan-
tiated in a user interface, only the current, previous,
and flight attributes are externally exposed. When the
exposed attributes of the widget are viewed, they are
revealed in place relative to their position within the
widget.

5 Interprocess communication

An T/O abstraction module is an independent pro-
cess that has a data boundary consisting of a set
of exposed variables. Modules communicate exclu-
sively through the variables in their data boundaries.
A Playground user does not need to understand the
details of interprocess communication to create dis-
tributed software modules. A Playground module is
simply a program written in a standard programming
language (e.g., C++) using the Playground library.

Communication between modules is specified
through logical connections between variables of the
module boundaries. When the value of a published

variable changes during the course of execution, the
changed value 1s implicitly communicated to all con-
nected variables in other modules. The details of how
the communication is handled is hidden from the im-
plementor and users of the module. This simplifies
module construction and gives the run-time system
flexibility in optimizing communication. The config-
uration of connections is determined dynamically at
run-time, rather than statically at compile time. This
gives users the flexibility to add new components or
relationships to their applications dynamically.

5.1 Interprocess connection manager

Playground modules and logical connections have
a visual representation in our visual specification lan-
guage. A Playground module (that is, an active pro-
cess) is represented as box with a set of data “plugs”
for each variable in the module’s boundary. The color
of each plug represents its type. Logical connections
are represented as arrows between pairs of variables in
module data boundaries (see Figure 7). The metaphor
is that of wiring together the components of a stereo
system, where the color of each cord denotes the type
of information it carries.

5.2 Aggregates

The Playground system supports aggregates (com-
pound data types such as sets and arrays) in a mod-
ule’s data boundary. Visualization of an aggregate is
accomplished in our language through “mapping” the
elements of the aggregate to a space in a graphical
user interface. This is accomplished by first creating
a prototype instance of the graphical representation of
an element of the aggregate within a space. To es-
tablish the mapping, one connects the attributes of a
representative element of the aggregate to attributes
of the prototype instance.

For example, in our air traffic control GUI, we
would like to establish a mapping between the
“planes” aggregate from the radar module to the space
of the GUI. First, we select our previously defined air-
plane widget and denote it as the prototype instance
(see Figure 8). Next, we expose the representative el-
ement of the planes variable, which consists of a tuple
containing variables “position”, “last”, and “name”.
Finally, we make the appropriate connections to the
airplane widget prototype.

We also establish an aggregate mapping from the
space of the GUI to the focus module boundary value
(recall that the “focus” value is a subset of airplane
flight TDs which are selected by the user). This map-
ping 1s defined through the use of a “selected” air-
plane widget alternative. We connect the flight ID

Audio

Radar

Planes

Radi
Tracker adio

Focus

Planes|Audio|Focus

Air Traffic

Control

Figure 7: Air traffic control distributed configuration

attribute from the widget’s selected alternative to the
focus value in the module boundary.

When an airplane widget is selected by the air traf-
fic controller, the widget changes visual representa-
tions toggling between the conventional and selected
alternatives. When an airplane widget is currently
displayed using the selected alternative, its flight 1D
is included in the focus set due to the aggregate map-
ping. Thus, the user can select a subset of airplanes
dynamically. External distributed modules may view
this value. In our example, it is used to select appro-
priate radio channels within the radio module.

5.3 Module configuration

The radar and radio modules, having been sepa-
rately defined using the Playground library, are con-
figured with the air traffic control module to com-
plete the application. The data boundary of the radar
tracker module consists of a single readable “planes”
variable, which is a set of tuples containing current
airplane status. The data boundary of the radio mod-
ule consists of a read/write “audio” variable and a
writable “focus” variable. Note that the audio vari-
able is a continuous data type, but communication is
specified in the same way as discrete data types.

The graphics editor from Figure 8 automatically
creates a module for the air traffic control GUI with-
out user programming. With a connection manager
GUI3, we can configure the modules of the air traffic
control application dynamically at run-time (see Fig-
ure 7). We use this GUT to create logical connections
between the radar, radio, and air traffic control mod-
ules, establishing interprocess communication.

3The connection manager GUI could be created using the
graphics editor described in this paper.

Air Traffic Control

N Plones oot ————— 1~ _ .
L | |

[Audio |[hame———>= |
| _Prototype |

I

Focus : |

| I

| I

| I

| I

| I

| I

| I

| I

V ° e 4

Figure 8: Mapping an aggregate to a space

5.4 Extensibility and module reuse

The air traffic control module is independent of the
radar and radio modules of the application shown in
Figure 7. Because of this independence, it is easy to
use this module for a slightly different purpose. Sup-
pose that in addition to the air traffic control display
of the current state of the airplanes, we wish to have
a projected display of the future trajectory of the air-
planes. That is, we want a simulation that repeat-
edly extrapolates forward in time at an accelerated
rate from the current state to a future state (e.g., one
minute ahead). This can be accomplished by creating
a “simulator” module which takes as input the current
state of the airplanes and outputs the interpolated fu-
ture state of the airplanes. As seen in Figure 9, the
end-user can simply create a separate instantiation of
the air traffic control GUI to display the simulated
state in addition to the current state display (these
GUIs would be displayed in separate windows). Also
note that the output of the radar tracker is a multicast
connection to two different modules in this configura-
tion. The Playground system automatically handles
the details of this communication at run-time, with-
out any special consideration from the implementor of
the radar tracker module.

6 Implementation status

Our visual specification language is a tool for con-
structing distributed multimedia applications. A ver-
sion of the Playground system exists for creating dis-
tributed software modules in the C++ programming
language. Also, we have designed and implemented
a customized graphics package which will be used as
the foundation of the user interface management sys-
tem. This graphics package is currently implemented
on top of the X window system [16], but it is not de-
signed exclusively for X windows. Using the graphics

Radar .
Radio
Tracker
Planes Audio | Focus
-

g
c

2

Simulator
Z
2
- -

Planes|Audio[Focus Planes|Audio }Focus

Air Traffic Air Traffic
Control Control
(Simulation) (Real)

Figure 9: Simulator

package, we have implemented the “connection man-
ager” direct manipulation graphical interface for man-
aging interprocess communication Playground system
(see Figures 7 and 9). As a foundation for our in-
traprocess communication, we have implemented an
efficient incremental constraint solver. The solver uses
ideas from the DeltaBlue algorithm [4] for local con-
straint strength propagation, but it resolves cycles of
constraints intelligently and has improved time com-
plexity.

7 Conclusion

We have presented a visual specification language
for the configuration of distributed multimedia appli-
cations. Our visual language supports the specifica-
tion of communication among components of a dis-
tributed application at all levels, from communica-
tion among graphics primitives within a user interface
to communication among large modules distributed
across multiple processors. The language also sup-
ports encapsulation at each level, and allows the user
to expose information at the data boundary for use at
the next level of abstraction. The visual mechanisms
and semantics are consistent across all levels.

References

[1] Amir Aboueinaga. TRW Sr. Staff Engineer and FAA Con-

sultant. Personal Communication.

[2] A. Borning. Thinglab — a constraint-oriented simulation
laboratory. ACM Transactions on Programming Lan-
guages and Systems, 3(4):353—-387, October 1981.

[3] Jerome R. Cox, Jr., Mike Gaddis, and Jonathan S. Turner.
Project Zeus: Design of a broadband network and its ap-

plication on a university campus. IEFEE Network, pages
20-30, March 1993.

[4] B. Freeman-Benson and J. Maloney Alan Borning. An in-
cremental constraint solver. Communications of the ACM,
33(1):54-63, 1990.

[5] David Gelernter and Nicholas Carriero. Coordination lan-
guages and their significance. Communications of the
ACM, 35(2):97-107, February 1992.

[6] Kenneth J. Goldman, Michael D. Anderson, and Bala
Swaminathan. The Programmers’ Playground: I/O ab-
straction for heterogeneous distributed systems. In Pro-
ceedings of the 27th Hawawi International Conference on
System Sciences, pages 363—-372, January 1994. Long ver-
sion available as Washington University technical report

WUCS-93-29.
[7] Michael M. Gorlick and Rami R. Razouk. Using weaves for

software construction and analysis. In Proceedings of the
13th International Conference on Software Engineering,
May 1991.

[8] Brent Hailpern and Gail E. Kaiser. Dynamic reconfigura-
tion in an object-based programming language with dis-
tributed shared data. In Proceedings of the 11th Inter-
national Conference on Distributed Computing Systems,
pages 73-80, May 1991.

[9] Ralph D. Hill. Abstraction-link-view paradigm: using
constraints to connect user interfaces to applications. In
ACM Conference on Human Factors in Computing Sys-
tems, pages 335342, May 1992.

[10] Gail E. Kaiser and Brent Hailpern. An object-based pro-
gramming model for shared data. ACM Transactions
on Programming Languages and Systems, 14(2):201-264,
April 1992.

[11] T.D. Kimura, J.W. Choi, and J.M. Mack. A visual lan-
guage for keyboardless programming. Technical Report
WUCS-86—6, Washington University in St. Louis, June
1986.

[12] Jeff Kramer, Jeff Magee, and Keng Ng. Graphical con-
figuration programming. IEEE Computer, 22(10):53-65,
October 1989.

[13] Jeff Kramer, Jeff Magee, and Morris Sloman. Configur-
ing distributed systems. In Proceedings of the 5th ACM
SIGOPS European Workshop, September 1992.

[14] B. A. Myers, et al. Garnet: Comprehensive support for
graphical, highly interactive user interfaces. IFEE Com-
puter, 23(11):71-85, November 1990.

[15] J.M. Purtilo. The polylith software bus. ACM Transac-
tions on Programming Languages and Systems, 16(1):151—
174, 1994.

[16] Robert W. Scheifler and Jim Gettys. The X window sys-
tem. Technical Report MIT/LCS/TR-368, MIT Labora-
tory for Computer Science, October 1986.

[17] R.E. Strom, D.F. Bacon, A.P. Goldberg, A. Lowry, D.M.
Yellin, and S. Yemini. Hermes: A Language for Distributed
Computing. Prentice-Hall, 1991.

[18] Bala Swaminathan and Kenneth J. Goldman. Dynamic
reconfiguration with I/O abstraction. Technical Report
WUCS-93-21, Washington University in St. Louis, August
1993.

[19] Shaula A. Yemini, German S. Goldszmidt, Alexander D.
Stoyenko, and Langdon W. Beeck. CONCERT: A high-
level-language approach to heterogeneous distributed sys-
tems. In Proceedings of the 9th International Conference
on Distributed Computing Systems, pages 162—171, 1989.

