
EUPHORIA: End-User Construction of Direct Manipulation
User Interfaces for Distributed Applications

T. Paul McCartney, Kenneth J. Goldman, and David E. Saff

WUCS-95-29

Department of Computer Science
Washington University
Campus Box 1045
One Brookings Drive
Saint Louis, MO 63130-4899

August 1995

1

 EUPHORIA: End-User Construction of Direct
Manipulation User Interfaces for Distributed Applications

T. Paul McCartney, Kenneth J. Goldman, and David E. Saff
 Department of Computer Science

Washington University
St. Louis, Missouri 63130

{paul, kjg, des}@cs.wustl.edu
http://www.cs.wustl.edu/cs/playground/

ABSTRACT

The Programmers’ Playground is a software library and run-time system for creating distributed
multimedia applications from collections of reusable software modules. This paper presents the design
and implementation of EUPHORIA, Playground’s user interface management system. Implemented as a
Playground module, EUPHORIA allows end-users to create direct manipulation graphical user interfaces
(GUIs) exclusively through the use of a graphics editor. No programming is required. At run-time,
attributes of the GUI state can be exposed and connected to external Playground modules, allowing the
user to visualize and directly manipulate state information in remote Playground modules. Features of
EUPHORIA include real-time direct manipulation graphics, constraint-based editing and visualization,
imaginary alignment objects, user-definable types, and user-definable widgets with alternative
representations.

KEYWORDS: constraints, direct manipulation, distributed applications, graphical user interfaces,
multimedia, user interface management system

1 INTRODUCTION

Distributed multimedia applications supported by a global electronic infrastructure have tremendous
potential for providing users with customized communication and computation environments. Applica-
tions include remote collaboration, information and resource sharing, and access to broadcast media.
Future users of the infrastructure will vary greatly in technical ability, ranging from novice users to
sophisticated expert users and programmers. Since communication and computation requirements vary
by context and change dynamically, it is unlikely that off-the-shelf applications will anticipate the needs
of all users. Therefore, empowering end-users to create their own customized applications for both com-
munication and computation is an important challenge. Support for end-user construction of distributed
applications means not only that users be able to combine software components, but also that they be
able to construct user interfaces for interaction with these custom applications. Therefore, a complete
solution to the end-user construction problem requires a user interface management system. Ideally, the
user interface management system should integrate the tasks of distributed application configuration and
graphical user interface construction.

The Programmers’ Playground [7][8][9] is a software library and run-time system that supports a new
programming model for distributed applications. The model, called I/O abstraction, provides a separation
of computation from communication that is well-suited for end-user construction of customized distrib-
uted applications from computational building blocks. Playground users do not need to write any source
code to establish communication between the modules of a distributed application, nor do they need to
understand the details of how communication occurs.

This paper describes EUPHORIA1, a module of the Playground distributed programming environment
that allows end-users to create direct manipulation graphical user interfaces exclusively through the use

1EUPHORIA is an acronym for End User Production of grapHical interfaces fOr Really Interactive distributed Applications.

2

of a graphics editor. Two different forms of communication occur as part of a complete, graphical distrib-
uted application. There is communication among the graphics objects within the user interface, and there
is communication among the user interface and the other modules of the distributed application. EUPHO-
RIA simplifies the application development process by carefully integrating the user interface
construction process with the specification of the distributed application communication structure. End-
users control both forms of communication, both forms may be changed dynamically at run-time, and nei-
ther requires any programming.

Within EUPHORIA, a direct manipulation GUI is created by end-users through the use of a graphical
tool palette. Communication among simple and compound objects within the GUI is achieved by estab-
lishing constraints among the attributes of the graphics objects. Similarly, to complete the distributed
application, the user establishes communication between the GUI and the other modules of the distributed
system by creating logical connections between the GUI module data boundary and the data boundaries
of the other modules. In this way, end-users can create a GUI completely independent of its application.
An application can also have multiple customized GUIs (i.e., multiple users) each of which displays infor-
mation in a different way.

The remainder of this paper is organized as follows. Section 2 discusses the theory and software
tools of The Programmers’ Playground. In Section 3, overview of related work is provided. Section 4
presents the EUPHORIA user interface management system followed by two example applications in Sec-
tion 5. Section 6 presents an overview of the design of EUPHORIA. Section 7 discusses possible further
research and Section 8 describes the current implementation status.

2 THE PROGRAMMERS’ PLAYGROUND

EUPHORIA is implemented in the context of The Programmers’ Playground. This section provides
some background on Playground and the I/O abstraction model on which it is based. We limit this back-
ground discussion to concepts necessary for this paper. Details on Playground may be found elsewhere
[9]. In the I/O abstraction model, each module in a distributed system has a data boundary2 containing
published variables that may be externally observed and/or manipulated. Modules are written in a stan-
dard programming language (e.g., C++) using the Playground library. The Playground library provides a
set of publishable data types. These include base types (e.g., integer, real, string), aggregate types (e.g.,
arrays, mappings), and tuples. Programmers may arbitrarily nest these types to form new publishable
data types, and new publishable aggregates may be defined as well.

A distributed application consists of a collection of independent modules and a configuration of logi-
cal connections among the published variables in the module data boundaries. Whenever a module
updates one of its own published data items, the new value is implicitly communicated to all connected
variables in other modules. The details of how the communication is handled are hidden from the imple-
mentor and users of the module. This simplifies module construction and gives the run-time system
flexibility in optimizing communication. The configuration of connections is determined dynamically at
run-time, rather than statically at compile time. This gives users the flexibility to add new components or
relationships to their applications dynamically.

I/O abstraction communication is declarative, rather than imperative. That is, one declares high-level
logical connections among the data items of individual modules, as opposed to directing communication
within the control flow of the module. Output is implicit, a by-product of computation. Input is
observed passively, or handled by reactive control within a module. This declarative approach simplifies
application programming by cleanly separating computation from communication. Software modules

2In other papers describing the I/O abstraction concept, the data interface of an I/O abstraction module has been called the “pre-
sentation.” Since this paper deals with user interfaces, we use the term “data boundary” in order to avoid confusion.

3

written using I/O abstraction do not make explicit requests to establish or effect communication, but
instead are concerned only with the details of the local computation. Exposing the configuration also
allows the run-time system to handle communication more effectively.

Playground modules and logical connections have a visual representation (Figure 1). A Playground
module (i.e., an active process) is represented as a box with a data “plug” for each variable in the mod-
ule’s data boundary. The color of each variable represents its type. Logical connections are represented
as arrows between pairs of variables in module data boundaries. The metaphor is that of wiring together
the components of a stereo system, where the color of each cord denotes the type of information that it
carries.

3 RELATED WORK

EUPHORIA’s contributions impact two distinct areas, graphical coordination languages for config-
urable distributed systems and end-user construction of graphical user interfaces. In this section we
highlight some of the related work in each of these areas.

The purpose of a coordination language [5] is to separate communication from computation in order
to offer programmers a uniform communication abstraction that is independent of a particular program-
ming language or operating system. The separation of computation from communication permits local
reasoning about functional components in terms of well-defined interfaces and allows systems to be
designed by assembling collections of individually verified components. Coordination languages typi-
cally provide a structured configuration mechanism for specifying relationships among program
modules. For example, Darwin [18] is a configuration language for managing message-passing connec-
tions between process ports in a dynamic system. Processes are expressed in a separate computation
language that allows ports to be declared for interconnection within Darwin. Conic, the predecessor of
Darwin, provides a graphical configuration mechanism for establishing bindings among the ports [17].
However, the modules of the system must still be concerned with when to send or receive messages on
these ports. In Polylith [25], a configuration is expressed using “module interconnection constructs” that
establish procedure call bindings among modules in a distributed system. The Weaves system [10] pro-
vides a configuration mechanism based on dataflow.

The ViewStation system [27] provides support for interactive media-based applications, where mod-
ules perform explicit communication using send and receive primitives. The VuSystem programming
environment includes a set of programming conventions, media processing elements and a TCL-based
[24] GUI for specifying both in-band media communication and out-of-band control communication.

Figure 1: Playground modules with logical connections.

4

User interfaces to these applications are typically constructed by writing TCL scripts.

Extensive work has been done in the area of user interface construction. Thinglab [2] uses constraints
to specify relationships between parts of a simulation graphical display. Thinglab represents early work
in graphical constraint systems and provided the foundation for many later systems. Garnet [23] provides
a toolkit which allows the user to construct interactive graphical user interfaces using an object oriented
constraint-based library. Garnet does not provide end-users with graphical mechanisms for establishing
relationships between the user interface and the application that it controls.

Fabrik [14][19] and LabVIEW [15] provide self-contained visual programming environments for
sequential computation. Fabrik represents visual programs as data flow graphs of connected component
icons. “Pins” are used as part of an overall electronics store metaphor, representing data ports used in
connecting the components of a visual program. Fabrik’s pin and component mechanisms are similar to
the “plug and play” nature of Playground’s module abstraction (Section 2) and end-user defined widgets
(Section 4.8). LabVIEW is a commercial visual programming environment designed for use by engineers
and scientists with little or no traditional programming experience. The basic component of any program
in the LabVIEW environment is a “virtual instrument,” that consists of a front panel and a block diagram.
Programs are written in G, a data flow based language with a special set of additional control flow. Nei-
ther Fabrik nor LabVIEW support distributed applications. Both have a fixed set of predefined graphical
components. In contrast, EUPHORIA supports end-user construction GUIs for distributed applications out
of user-defined graphics components. The computational components of a distributed Playground appli-
cation are created by programming in an existing language (e.g., C++). Our graphical tools are then used
to define relationships among the states of modules in a distributed system and the state of the GUI, as
well as relationships among graphics objects within the GUI.

The Rendezvous project [13] concentrates on the separation of user interfaces from their applications
through the use of interprocess communication. Rendezvous is a transition from purely user interface ori-
ented systems to systems that decouple the construction of the graphical user interface from their
applications. GUIs are constructed by creating programs using MEL, a language extension to Common
Lisp providing support for graphics operations, object-oriented programming, and constraints. Con-
straints are used as Rendezvous’ interprocess communication mechanism between an abstraction
(controlling source code) and a view (its visualization). Playground does not utilize constraints for inter-
process communication. Instead, constraints are used exclusively to define relationships between the
attributes of graphics objects within a GUI. Playground’s interprocess communication abstraction, logi-
cal connections, decentralizes the communication of modules in a distributed system; Playground
modules communicate asynchronously without the need for a centralized constraint solver.

4 EUPHORIA USER INTERFACE MANAGEMENT SYSTEM

The EUPHORIA user interface management system is based on a visual language for describing com-
munication among modules in a distributed system and graphics components of a user interface [22].
This section describes how users create simple and compound objects of a user interface and define rela-
tionships among those objects. Relationships include constraints and encapsulation of graphics object
groups by means of a data boundary.

EUPHORIA’s graphics editor consists of three parts (see Figure 2). The body of the window is used
for drawing and manipulation of GUIs. The top of the window contains a palette of drawing commands
including basic graphics objects (e.g., rectangles, ovals) and user/system defined compound graphics
objects (i.e., widgets). The left side of the editor window contains the data boundary portion of the edi-
tor. Both the tool palette and the data boundary may be hidden once construction of a GUI is completed.

5

4.1 Graphics primitives and attributes

EUPHORIA supports a number of different types of graphics objects including rectangles, text, and
images. Each graphics object has a set of attributes whose values define not only its visual appearance
but also other state information such as whether or not it is “selected.” Graphics object attributes are
visually represented as handles that are positioned in appropriate places relative to the object. Handles
serve a dual role in EUPHORIA. In addition to dragging, the user can also establish relationships (i.e.,
constraints) among the attributes of the graphics objects by using the handles as data ports.

4.2 Spaces

A space is a coordinate system that contains graphics objects. For example, the main drawing area of
the EUPHORIA window is a space. To simplify user interface construction, EUPHORIA allows end-users
to define multiple spaces with independent coordinate scaling factors, origins, and bounding rectangles.
User defined coordinate systems allow a user interface to be defined in terms of meaningful values
instead of raw pixels. In this way, external Playground modules need not be aware of how their GUIs dis-
play information.

4.3 Constraints

Constraints are a simple, yet powerful, way to specify persistent relationships among graphical
objects. End-users can establish constraint relationships among graphics object attributes. Once a con-
straint is formed, the constraint solver is responsible for maintaining the relationship when changes are
made to connected graphics objects or published variables.

Three types of constraints can be established by end-users: constant, equality, and conversion. Con-
stant constraints are formed on an attribute of a graphics object by “anchoring” its corresponding
handle. Equality constraints are formed by dragging a connection line between two graphics object han-
dles. A conversion constraint is a specialized equality constraint in which the graphics attribute data
types are compatible, but not the same, requiring a type conversion (e.g., connecting a real number graph-
ics attribute to a string graphics attribute).

Figure 3 shows the process of inscribing an oval within a rectangle through the use of constraints. A
constraint between the oval and rectangle left-top corners is formed by dragging a connection line
between the corresponding handles. This action causes the oval to “snap” to the position of the rectan-

Figure 2: EUPHORIA graphics editor.

Dr
aw

in
g

Pa
le

tte
M

ain Drawing AreaDa
ta

 B
ou

nd
ar

y

6

gle. A constraint is also formed between the right-bottom corners of the oval and the rectangle,
inscribing the oval within the rectangle. These constraint relationships are maintained by the constraint
solver; moving or resizing either the oval or the rectangle causes the other to change as well.

4.4 Constraint visualization

Since constraint graphs in EUPHORIA can grow large, the user may want to examine or edit the con-
straint graph to verify that it behaves in the expected manner. Constraints among selected graphics
objects can be visualized and edited, with constraints to imaginary or off-screen objects hidden unless the
user decides to display them. This allows for selective viewing of constraint information.

An equality or conversion constraint is shown as a line between the handles that represent the values
it constrains; constraints in which these handles are close are shown as circles around the handles (Fig-
ure 4a). An anchor is shown as an open square around the handle it anchors. All visualized constraints
flash to distinguish them from the surrounding objects. The colors between which the constraints flash
indicate the types of values constrained. The thickness of the constraint shows its hierarchical strength
(see Section 6.3). Constraints not presently enforced are shown as broken lines. If the user chooses to
display the propagation direction of the constraints, arrowheads point towards the values that were last
changed by each constraint. Users can also change constraint strengths or delete constraints by interact-
ing with the constraint visualization.

In certain cases, it may be difficult or impossible to determine to which objects a constraint is con-
nected or the propagation direction of a constraint, especially when a number of objects are constrained
at one corner (see Figure 4a). In these cases, the user may temporarily displace the apparent positions
and sizes of objects on the screen. However, this editing has no effect on any other objects on-screen; the
“real” positions and sizes remain as they were previously. This allows the user to “pull” graphics objects
apart whose corners are constrained together, in order to view, edit, or delete the constraints between
them (Figure 4b). When the editing is complete, the displacements are reset and the objects “snap back”
to their original positions.

4.5 Imaginary objects

Many desirable constraint relationships cannot be established by equality constraints directly between

Figure 3: Inscribing an oval within a rectangle.

Figure 4: Constraint visualization in (a) normal view and (b) displacement mode.

(a) (b)

7

graphics object attributes. For this reason, EUPHORIA supports imaginary objects. Imaginary objects
are invisible shapes that serve as an abstraction for defining indirect constraints between attributes. Any
graphics primitive or widget can serve as an imaginary object. The attributes of an imaginary object can
be constrained with the attributes of other graphics objects. In this way, users can create indirect con-
straints among graphics objects visually using the same mechanism used to create constraints among the
attributes of visible objects.

For example, an oval in EUPHORIA does not have a handle for its center. However, through the use
of two rectangles and a few constraints, it is possible to create an oval center handle (see Figure 4a). The
sizes of the two rectangles are constrained to be equal and the right-bottom corner of one rectangle is con-
strained to be equal to the left-top of the other. These rectangles are then inscribed within the oval. The
result is a handle that always remains in the center of the oval. The rectangles are then hidden by making
them imaginary.

4.6 Data boundaries

The data boundary (see Figure 2) represents the subset of the attributes within the drawing area that
are exposed to external Playground modules as published variables (see Section 2). When a published
variable is changed in an external module, Playground sends the change out to all connected modules,
including EUPHORIA. Similarly, when a graphics object is changed (e.g., moved by the user), this
change may also be sent out to external Playground modules, according to the logical connections
between published variables. Animated visualizations and interactive direct manipulation GUIs can be
created by connecting appropriate attributes of a EUPHORIA drawing to external modules.

EUPHORIA supports all Playground base types (e.g., integer, string) and tuples. Each published vari-
able is represented as a color-coded rectangle with a variable name and read/write permissions. Tuple
variables containing a number of heterogeneous fields can be created interactively and viewed hierarchi-
cally [21].

4.7 Alternatives

A space can have multiple representations called alternatives. For example, a simulation GUI might
consist of an alternative that shows the simulation state graphically, allowing direct manipulation, and an
alternative that shows expanded information in a more “text and button” type representation. Alterna-
tives are useful in the development of widgets.

4.8 Widgets

A widget is an encapsulated space containing graphics objects with a set of published attributes. Wid-
gets are created visually by end-users. One may think of a widget as a “module” of graphics shapes with
a “data boundary” of externally readable/writable attributes. The data boundary of a widget defines the
subset of attributes which can be used externally by its container to control the widget’s appearance. As
with other graphics objects, the external attributes of a widget can be viewed, revealing handles that can
be used for direct manipulation or in forming connections to the widget.

For example, the thermometer widget in Figure 2 can be constructed by an end-user as follows. First,
the component shapes of the thermometer are drawn and constraints among the shapes are formed (Fig-
ure 5a). A scaling factor for the widget space is set using a coordinate system tool so that the top of the
thermometer represents 300 degrees Fahrenheit. This allows external applications to interact with the
thermometer in terms of real world values rather raw pixels. Second, the data boundary of the widget is
defined by publishing the height of the mercury (i.e., the temperature, see Figure 5b). The data boundary
specifies that only the temperature attribute will be exposed from the widget when it is used. The specifi-
cation of the widget is saved, and the widget can then be used within a GUI (Figure 5c). Notice that the
only handles on the selected thermometer are the default bounding box handles and the temperature

8

handle.

A widget can also have alternatives. For instance, a widget may have an alternative for its “selected”
representation in addition to its conventional representation. Each alternative may have a set of exposed
attributes. The currently displayed alternative is selected by means of an “alternative ID” widget
attribute. Section 5.2 describes an example application which uses a widget with alternatives.

5 EXAMPLE APPLICATIONS

This section describes two example applications using EUPHORIA. Descriptions of additional applica-
tions can also be found in Section 7 and other publications [7][22].

5.1 Process control simulation

 Maple syrup is produced by pouring maple sap into a vat and boiling away excess water until a suit-
able concentration level is reached (see Figure 2). A factory producing maple syrup must adjust a
number of actuators controlling properties such as the incoming sap flow rate and the burner status (i.e.,
on or off). The process control application automates maple syrup production, controlling the factory
actuators in response to sensor values. A GUI is created in EUPHORIA that displays an interactive anima-
tion of the production state to an operator who can override the system’s decision through direct
manipulation.

The process control application consists of three communicating modules (see Figure 1). The SEN-
SOR module monitors conditions of the syrup production: concentration, volume, and temperature.
These values are communicated to the other modules. The CONTROL module controls the actuator set-
tings based on the sensor values, communicating the settings to the other modules. The EUPHORIA
module takes as input the sensor and actuator values, animating the production display over time. Sensor
and actuator information is exposed among the modules through the use of Playground published vari-
ables. End-users configure the communication among these modules at run-time by drawing logical
connections between the published variables.

The display is drawn in EUPHORIA (see Figure 2), utilizing end-user defined widgets for each display
component (e.g., see creation of the thermometer widget in Figure 5). Each widget has a published han-
dle which is connected to EUPHORIA’s data boundary through the use of constraints. For example, the
thermometer widget has a published handle representing its temperature. Widgets are drawn using their
own coordinate system, so that external modules can specify display values in terms of real world values
rather than raw pixels. For example, the temperature is specified in terms of degrees Fahrenheit rather
than the pixel height of the thermometer’s “mercury” rectangle. This allows the SENSOR and CONTROL
modules to be created completely independent of their user interface.

Figure 5: Creating a thermometer widget.

(a) (b) (c)

300

9

Note that the actuator connections between the CONTROL and EUPHORIA modules are bidirectional,
allowing user interaction in the display to override decisions of the CONTROL module, in which case the
CONTROL module would report the user-specified values to the SENSOR module. For example, the fac-
tory operator can adjust the valve of the incoming sap by dragging the width of the sap flow rectangle.

5.2 Medical image processing & remote collaboration

A nuclear medicine radioactive blood pool study is used to create movies of the human heart for diag-
nostic purposes. Each movie consists of a series of pixmap images. One problem is that ambient
radiation introduces noise, making it difficult to read the images. A solution to this problem is to reduce
the noise by digitally filtering the images.

An interactive filtering application is created through the use of four communicating modules (Figure
6). A SERVER module outputs a series of images of the human heart in response to a supplied file name.
A FILTER module takes as input an image and outputs a filtered image based on a supplied threshold min-
imum. Customized, multi-user GUIs for the filtering operation are created in EUPHORIA, and are used to
both control and view the filtering operation.

One possible use of this application is remote collaboration between a radiologist and an attending
physician. The radiologist, located in a city hospital, specifies the file name of the blood pool study
within EUPHORIA by editing a text object. The “string” attribute of the text object is published as a vari-
able called FILE, which is connected to the FILE published variable of the SERVER module. Editing the
text object causes the file name to be communicated to the SERVER module. The attending physician,
located in the city’s suburb, may specify the filtering threshold by either dragging a slider or editing its
text value. The “width” attribute of the slider body is constrained to be equal to the “string” attribute of
the slider text value through the use of a conversion constraint. The threshold value is published as a
variable called MIN, which is connected to the FILTER module’s MIN published variable. Based on the
threshold, the FILTER module outputs a series of filtered movie images to both GUIs. Each GUI stores
the images in a movie widget, with each image stored in a separate alternative of the widget.

The GUIs also have a pair of shared cursors for the physician and the radiologist to discuss areas of
interest within the movie. Each person has their own cursor which they can control, plus an additional
cursor showing the movement of the other person’s cursor. The cursors are created by drawing circles,
publishing the positions of the circles, and making the appropriate logical connections among the EUPHO-
RIA modules. When a person moves their cursor, the published position of the cursor is communicated
to the other person’s GUI, moving its corresponding cursor. Additionally, a “region of interest” rectangle
could be drawn and shared by the two GUIs.

Figure 6: Medical image processing application.

radiologist (city) physician (suburb)

MIN

MIN

MIN

10

Changing the displayed image of the movie (i.e., the current “frame”) is achieved by making a con-
straint to the “alternative ID” attribute of the movie widget (not shown). The displayed frame ID can be
published and shared between the two GUIs3. The playback rate of the movie (i.e., number of frames per
second) can be specified in a number of ways. A textual frame number can be created and attached to the
alternative ID, displaying the current frame number and allowing a single still frame to be specified. A
slider similar to the threshold slider can be drawn and attached to the alternative ID, allowing direct
manipulation of the displayed frame, range, and rate of playback. A third approach is to create a separate
Playground module which increments a counter at regular intervals and connect the counter value to the
alternative ID of the GUI’s movies. The frame number range and rate of playback may also be specified
graphically within a GUI module.

6 DESIGN SUMMARY

EUPHORIA consists of a number of software components that were designed to support the develop-
ment of distributed multimedia applications. This section describes some of these components, their
benefits, and how they interact. Note that this is a description of the internal design of EUPHORIA and
not a description of the software utilized directly by end-users.

6.1 Graphics package foundation

One of the goals of The Programmers’ Playground is to provide a uniform communication mecha-
nism between computers with different hardware platforms and operating systems. For this reason, a
graphics package was developed to facilitate portability of the user interfaces to different window sys-
tems/graphics libraries. The graphics package consists of a system-dependent tiny graphics package
component and a higher level component written in terms of the tiny graphics package. The idea is to
minimize and encapsulate system-dependent operations so that only a limited amount of code needs to be
changed when porting to a different window system4.

Graphics objects are defined declaratively, rather than procedurally, by instantiating C++ classes. This
allows the user of the graphics package to create graphics objects of a view and let the system take care
of the updates to the view. Changes to graphics objects are recorded by the system through the use of
invalidation regions. That is, when an object changes, its old and new spatial dimensions are added to an
invalidation region. Periodically, the invalid portions of graphics windows are redrawn. Double buffer-
ing is utilized for smooth animation. Redrawings of the graphics window are synchronized to minimize
the amount of drawing needed to be done by an application. This allows graphics objects and images to
be directly manipulated in real-time without the use of “xor patterns” that most commercial graphics edi-
tors and window systems utilize.

The event system of the graphics package was custom made to allow high level graphics processing.
Processing of events and updates are interleaved, providing natural “modeless” operations. For example,
in most commercial applications, selection of a menu causes all other activity on the screen to become
suspended. In our graphics package, all direct manipulation can be done at the same time as animation
and updates from external applications.

6.2 Communication with other Playground modules

Like all Playground modules, EUPHORIA communicates with external modules through the use of
published variables. Published variables are connected to the attributes of graphics objects through the
use of constraints. Over time, external input changes to the published variables are collected. At regular

3Due to communication delays over the Internet, the two movie displays may not be precisely synchronized.
4Currently, the tiny graphics package is written using only a small subset of the X window system’s Xlib library [26]. It con-

sists of approximately 1000 lines of code.

11

intervals of time, the set of changes to the published variables is propagated simultaneously into the con-
straint graph of EUPHORIA. Output changes to published variables are also produced within an atomic
step operation [8] at regular intervals. These synchronizations and simultaneous updates are necessary to
keep values consistent in the presence of asynchronously running modules and interprocess communica-
tion delays. Also, this synchronization greatly reduces both the amount of interprocess communication
generated by the EUPHORIA module and the amount of redrawing of graphics objects in EUPHORIA.

6.3 UltraBlue constraint solver

Constraints are the heart of internal communication and other types of interaction in EUPHORIA (see
Section 6.4). We developed a constraint algorithm called UltraBlue [20] to serve as the constraint engine
of EUPHORIA. UltraBlue inherits ideas from a well known constraint algorithm called DeltaBlue [4].
Like DeltaBlue, UltraBlue is a graph-based constraint algorithm for maintaining and solving a set of con-
straint relationships. Constraints are multi-way, meaning that the computation direction of a constraint
graph can be changed dynamically based on the incremental addition or deletion of constraints. Con-
straints are also hierarchical, meaning that different constraints have different levels of preference.
Constraint preferences are used to resolve conflicts in the presence of conflicting constraint relationships.

DeltaBlue, however, does not handle cyclic dependencies of a series of constraints in a manner that is
consistent with the hierarchical preference structure. In the early stages of development of EUPHORIA, it
became clear that most interesting constraint relationships involve some type of cyclic dependency.
UltraBlue handles cycles by changing the directionality of the constraint graph when cycles are detected.
This cycle avoidance strategy considers the preference levels of constraints to maximize the number of
preferred constraints enforced over constraints with lower preference levels.

Constraints in DeltaBlue are generally equality relationships among a set of values. UltraBlue pro-
vides an additional mechanism called verification which allows inequalities and other kinds of invariants
to be maintained.

6.4 Internal constraint communication

Graphics objects in EUPHORIA have an underlying constraint representation that is essentially a
directed acyclic graph (Figure 7). This graph structure allows us to have a consistent internal communi-
cation structure within EUPHORIA. That is, constraints are not only used for user-defined relationships
between graphics objects, but are used for direct manipulation and internal communication among
objects as well.

Figure 7a shows the internal constraint graph representation for a rectangle. A rectangle consists of a
number of attributes such as “left”, “right”, and “width” represented as constraint variables5 of the con-
straint graph. Constraints are formed among constraint variables, defining relationships to be maintained
among the attributes of the rectangle. For example, the “right” attribute of the rectangle is the sum of the
“left” and the “width” attributes. Whenever one or more constraint variables change, the changes are
propagated through the graph, updating all connected constraint variables according to the established
constraint relationships.

Other types of constraints include stay constraints and active value constraints [12]. Stay constraints
serve to keep a constraint variable constant, in the absence of other constraints. These constraints are usu-
ally specified with a low preference level. When other constraints with higher preference levels are
specified, the stay constraints are overridden, becoming unenforced. In Figure 7a, both “width” and
“height” have associated stay constraints. This is useful, for example, in keeping the size of the rectangle
constant when it is being moved by the user. Also, the “width” and “height” variables have associated

5Constraint variables have no direct relationship to Playground variables.

12

verification methods ensuring that their values always remain non-negative. An active value constraint is
used to automate the drawing process of the rectangle. Whenever the active value constraint is evaluated
(as a result of connected constraint variable changes), areas of the window are invalidated for later
redrawing. In Figure 7, active value constraints are shown as the constraints which compute the “draw”
constraint variables.

Graphics object handles can be connected directly to the constraint graph of the graphics object under
their control. In this way, one can manipulate an object using the same mechanism that is used for other
types of internal communication. Figure 7b shows the constraint graph representation of a rectangle with
an attached handle for its left-top corner which is being dragged by the user (i.e., resizing the rectangle).
Attaching a handle simply involves creating a constraint graph for the handle and forming constraints
between the handle’s graph and the rectangle’s graph. In this way, whenever the rectangle or the handle
change position or size in any way (e.g., direct manipulation, external interprocess communication, etc.)
the other is changed and redrawn to be consistent with that change. The directionality of the constraints
is changed dynamically based on the addition or deletion of other constraints.

To resize the rectangle, a few other constraints are added to the graph. In Figure 7b, the “right” and
“bottom” constraint variables are anchored with constant constraints. These constraints are specified
with a preference level that is higher than that of the stay constraints on the “width” and “height” con-
straint variables. This causes the rectangle graph to be redirected, changing how the rectangle attributes
are computed. In this case, the change specifies that the right-bottom corner of the rectangle should
remain constant while the width and height are changed by means of the handle. The “left” and “top”
constraint variables of the handle (shown at the top of Figure 7b) have attached edit constraints. When-
ever the handle is moved by the user, the x and y coordinates of the handle are copied into these
constraint variables. Propagating these values through the constraint graph results in: (1) redrawing the
handle, (2) computing a new size for the rectangle, (3) redrawing the rectangle, and (4) propagation of
values to any other objects that may be attached to the graph.

Figure 7: A) Rectangle constraint graph. B) Attaching a handle constraint graph (handle is dragged by the user).

left

right

width height

top

bottom

draw

left

right

width height

top

bottom

draw

left

center

width height

top

center

draw

(a) (b)

KEY:

Constraint Variable

Enforced Constraint

Unenforced Constraint

X Y

13

6.5 Communication structure overview

Figure 8 provides an overview of how both interprocess and internal communication occurs within
EUPHORIA. A Playground application consists of a number of modules, including EUPHORIA, each of
which have a set of published variables. Interprocess communication between modules is defined
through logical connections between published variables. Whenever a published variable is changed by
its module, the change is communicated to the connected variables according to the logical connections.

When external values are communicated to EUPHORIA’s published variables, EUPHORIA reacts by
copying the values into constraint variables associated with the data boundary. These constraint variables
are connected to the constraint graphs of graphics objects within EUPHORIA. The values of these vari-
ables are propagated through the connected constraint graphs, having the effect of changing graphics
object attributes according to the established constraint relationships and redrawing graphics objects. In
the same way, internal changes to graphics objects (e.g., direct manipulation) are propagated through the
constraint graph and copied into EUPHORIA’s published variables, sending the values out to external
applications.

Graphics objects and EUPHORIA published variables also have associated ports, shown as tall rectan-
gles in Figure 8, that are used to manage bundles of constraints. Ports and bundles are used for internal
bookkeeping and type checking. For example, a rectangle has an upper left corner attribute that is of
type “point.” This attribute is actually represented as a pair of constraint variables for the x and y coordi-
nates of the point and is managed by a port. This port cannot be connected to the port representing the
width of a rectangle, since width is of type “real number.” A bundle between “point” ports is actually a
pair of constraints between the x and y values of the ports. Ports and bundles are also used to visualize
constraints (see Section 4.4).

6.6 Run-time construction

EUPHORIA does not have separate modes for creating and running GUIs. Instead, GUIs can be cre-
ated interactively at run-time and can be modified while they are being run. This gives the designer of a

Figure 8: Communication structure of EUPHORIA.

EUPHORIAPlayground

Mod1

Mod2

Data Boundary
Constraint Graph

Drawn Object

Invalidation & Drawing

14

GUI a sense of instant gratification, since one can immediately see the results of changes during construc-
tion. This also gives end-users the ability to customize a GUI (possibly created by someone else) even
while its application is running! The drawing command palette and data boundary of the EUPHORIA win-
dow (see Figure 2) can be hidden, giving the end-user an unobstructed view of the GUI.

A special tool is not required to create widgets. Instead, a widget can simply be drawn in EUPHORIA
and saved. One can load a EUPHORIA file, interpreting it as a widget. In this way, users do not need to
learn about a different interface for creating widgets and the implementation does not need to support
two different types of graphics editors.

7 FUTURE WORK

This section outlines specific plans for further enhancements to EUPHORIA in order to broaden the
supported class of applications.

7.1 End-user specification of arbitrary constraint relationships

A calculator object would allow users to specify arbitrary constraint relationships among graphics
objects. Like other graphics objects, a calculator has a number of variable ports, from which the user can
make constraints. The ports are given names, and an editing area allows the user to specify an algebraic
formula using the port variables. A multi-way constraint graph is constructed from the formula, provid-
ing a means to compute any of the variables dynamically in terms of the others. Once the user is satisfied
with the configuration, the calculator can be made imaginary.

One use of a calculator object is a conversion between scales of measurement, such as Celsius and
Fahrenheit temperatures (see Figure 9). The calculator maintains the mathematical relationship between
its two ports, computing degrees Celsius when the thermometer is manipulated or computing degrees
Fahrenheit when a new Celsius value is entered. Another use is the computation RGB color values of an
object based on a single input value. For example, the syrup factory example described in Figure 5.1 has
a widget displaying the concentration of maple syrup using a bar graph (see Figure 2). A more natural
way to display this information is to have the color of the syrup in the vat appear darker as the syrup
becomes more concentrated.

Calculators encapsulated inside widgets allow frequently used equations to be easily duplicated. Fig-
ure 10 shows an addition widget, built using a calculator object. By constraining handles to the three
ports, one can constrain a value to be the sum of two other values. Apart from the definition of user inter-
face modules and the encapsulation of modules to form larger units, we have not addressed the problem
of end-user construction of the computational components. A visual programming language supporting
the construction of Playground modules would offer the user increased flexibility in the construction of

Figure 9: A calculator object for converting between temperature scales.

[].

)

+

_

*

=

^

(

7
Cel
Fahr

New

(9/5) * Cel = Fahr - 32

1 2 3

5 6

8 9

0

/

4
23 C

15

custom applications. A promising approach to this problem would be the integration of Playground with
a general purpose visual computation language based on dataflow concepts, such as the “Show and Tell”
system [16].

7.2 Aggregate mappings

An aggregate is a collection of homogeneous data structures. Playground supports a number of aggre-
gate data types including arrays and groupings. We plan to implement aggregate mappings in
EUPHORIA, allowing end-users to create interactive visualizations of an aggregate through the use of
declarative mapping rules. Visualization of an aggregate will be achieved through “mapping” the ele-
ments of the aggregate to a space. This would be accomplished by first creating a prototype instance of
the graphical representation of an aggregate element. To establish the mapping, one will connect the
attributes of a representative element of the aggregate to attributes of the prototype instance. The result
will be a dynamically changing, interactive visualization of the aggregate’s elements.

For example, an air traffic control GUI could be created in which an air traffic controller sees a circu-
lar area surrounding a centered “airport.” The area contains a number of airplanes that are currently
approaching or leaving the airport. An airplane is represented using a wedge shape labeled with the
flight ID. The length of the wedge is used to represent the relative speed of the airplane (i.e., the longer
the wedge, the faster the airplane is moving). Over time, the position and length of the airplanes are
updated to display the current state [1]. An aggregate mapping for the air traffic control GUI could be cre-
ated as follows. The prototype instance, a widget of an airplane, is created (Figure 11a) with three
published attributes: current position, last position, and flight ID. The two positions together determine
the position, length, and orientation of the airplane. Mapping rules are established by making connec-
tions from the representative element of an airplane information tuple set to the airplane widget (Figure
11b). The result is an air traffic control GUI with an arbitrary number of dynamically changing, animated
airplanes (Figure 11c).

Another use of aggregate mappings is to create tabular displays (e.g., a spreadsheet). A multimedia

Figure 10: An addition widget.

Figure 11: Creation of an aggregate mapping for an air traffic control display.

Flight ID

(a)

Flight ID
Set of Plane tuples

(b)

TWA-257

USAir-186

TWA-578

USAir-193

(c)

16

teleconferencing application GUI that we have previously developed [7] could also be created using
tables defined by aggregate mappings (e.g., each participant of a conference is represented as a picture in
an interactive table). This work is part of a project on construction of distributed multimedia applications
on top of an ATM testbed [3].

7.3 Module abstractions

The module visual abstraction described in Section 2 is an intuitive mechanism for configuring Play-
ground applications. However, for large applications it can become cumbersome to deal with many
interconnected modules in this way. We have a number of enhancements to the module visual abstrac-
tion planned. Modules will be configured within EUPHORIA rather than in a separate user interface (see
Figure 1). This will allow us to leverage off the existing widget mechanism to support module encapsula-
tion and end-user customization of a module’s appearance and interaction.

For example, the filter module described in Section 5.2 could be implemented as a number of commu-
nicating modules in a distributed image processing pipeline [7]. This would speed up computation, since
frames of a movie could be processed on two or more computers in parallel. A series of several pipeline
modules would make Figure 6 quite difficult to comprehend. One would be able to place the modules of
the pipeline into a widget representing the overall filtering operation, publish the external variables of the
widget, and make the internal pipeline modules imaginary (i.e., hide the details of the computation). The
filter module would not need to appear as a “black box” as in the current implementation. Alternatively,
one could customize the visual appearance of a module by drawing shapes, interactive handles, text
labels, etc. within the filter module widget.

8 CONCLUSION

We have described EUPHORIA, a user interface management system that supports end-user construc-
tion of direct manipulation, distributed multimedia applications. No programming is required to create
end-user GUIs or to configure the communication.

A version of the Playground system exists for creating distributed software modules in the C++ lan-
guage on the Solaris and Silicon Graphics IRIX operating systems. The run-time system handles
communication over sockets using TCP/IP. Supported features include dynamic end-user configuration of
applications, separation of communication from computation, separation of active and reactive control,
and migration of running modules to other processors.

The graphics package described in Section 6.1 has been implemented in X windows. Using this
graphics package, we have implemented a “connection manager” direct manipulation graphical interface
for managing communication configuration. We have also implemented EUPHORIA, using the graphics
package and the UltraBlue constraint solver (Section 6.3). Supported features include real-time direct
manipulation graphics, constraint-based editing and visualization, imaginary alignment objects, user-
definable types, and user-definable widgets with alternative representations.

In Spring 1995, The Programmers’ Playground and EUPHORIA were used to teach an undergraduate
course, CS333, at Washington University on the topic of distributed programming environments. The Pro-
cess Control Simulation and Medical Image Processing application described previously were among the
assignments from the course.

The Playground World Wide Web site [6] contains general information, live interactive demonstra-
tions of both the Programmers’ Playground and EUPHORIA, and course materials from CS333.

ACKNOWLEDGMENTS

We thank EUPHORIA users, including the students in CS333 for their useful comments. We thank

17

Bala Swaminathan and Ram Sethuraman for their work in developing the Playground library. This
research was supported by National Science Foundation grants CCR-91-10029 and CCR-94-12711.

REFERENCES
[1] Amir Aboueinaga. TRW Sr. Staff Engineer and FAA Consultant. Personal Communication.

[2] A. Borning. Thinglab - A Constraint-Oriented Simulation Laboratory. ACM Transactions on Programming
Languages and Systems, 3(4):353-387, October 1981.

[3] Jerome R. Cox, Jr., Mike Gaddis, and Jonathan S. Turner. Project Zeus: Design of a Broadband Network and
its Application on a University Campus. IEEE Network, pages 20-30, March 1993.

[4] B. Freeman-Benson, J. Maloney, Alan Borning. An Incremental Constraint Solver. Communications of the
ACM, 33(1):54-63, 1990.

[5] David Gelernter and Nicholas Carriero. Coordinations Languages and their Significance. Communications of
the ACM, 35(2):97-107, February 1992.

[6] Kenneth J. Goldman, et. al. “Welcome to the Programmers’ Playground!” http://www.cs.wustl.edu/cs/play-
ground/.

[7] Kenneth J. Goldman, T. Paul McCartney, Ram Sethuraman, and Bala Swaminathan. The Programmers’ Play-
ground: A Demonstration. In Proceedings of the 1995 ACM International Conference on Multimedia,
November 1995. To appear. See also the conference CD-ROM proceedings for a longer version.

[8] Kenneth J. Goldman, T. Paul McCartney, Ram Sethuraman, Bala Swaminathan, and Todd Rodgers. Building
Interactive Distributed Applications in C++ with The Programmers’ Playground. Washington University
Department of Computer Science technical report WUCS-95-20, July 1995.

[9] Kenneth J. Goldman, Bala Swaminathan, T. Paul McCartney, Michael D. Anderson, and Ram Sethuraman.
The Programmers’ Playground: I/O Abstraction for User-Configurable Distributed Applications. IEEE
Transactions on Software Engineering. To appear.

[10] Michael M. Gorlick and Rami R. Razouk. Using Weaves for Software Construction and Analysis. In Pro-
ceedings of the 13th International Conference on Software Engineering, May 1991.

[11] Brent Hailpern and Gail E. Kaiser. Dynamic Reconfiguration in an Object-Based Programming Language
with Distributed Shared Data. In Proceedings of the 11th International Conference on Distributed Comput-
ing Systems, pages 73-80, May 1991.

[12] Tyson R. Henry and Scott E. Hudson. Using Active Data in a UIMS. In Proceedings of the ACM Sympo-
sium on User Interface Software, pages 167-178, October 1988.

[13] Ralph D. Hill. Abstraction-Link-View Paradigm: Using Constraints to Connect User Interfaces to Applica-
tions. In ACM Conference on Human Factors in Computing Systems, pages 335-342, May 1992.

[14] Dan Ingalls, Scott Wallace, et. al. Fabrik: A Visual Programming Environment. In OOPSLA Conference
Proceedings, pages 176-190, September 1988.

[15] J. Jagadeesh and Y. Wang. LabVIEW. Product Review, Computer, February 1993.

[16] T. D. Kimura, J. W. Choi, and J. M. Mack. A Visual Language for Keyboardless Programming. Washington
University Department of Computer Science technical report WUCS-86-6, June 1986.

[17] Jeff Kramer, Jeff Magee, and Keng Ng. Graphical Configuration Programming. IEEE Computer, 22(10):53-
65, October 1989.

[18] Jeff Kramer, Jeff Magee, and Morris Sloman. Configuring Distributed Systems. In Proceedings of the 5th
ACM SIGOPS European Workshop, September 1992.

[19] Frank Ludolph, Yu-Ying Chow, et. al. The Fabrik Programming Environment. In Proceedings of the IEEE

18

Workshop on Visual Languages, pages 222-230, 1988.

[20] T. Paul McCartney. User Interface Applications of a Multi-way Constraint Solver. Washington University
Department of Computer Science technical report WUCS-95-22, August 1995.

[21] T. Paul McCartney and Kenneth J. Goldman. EUPHORIA Reference Manual. Washington University
Department of Computer Science technical report WUCS-95-19, July 1995.

[22] T. Paul McCartney and Kenneth J. Goldman. Visual Specification of Interprocess and Intraprocess Commu-
nication. In Proceedings of the 10th International Symposium on Visual Languages, October 1994, pp. 80-87.

[23] B. A. Myers, et al. Garnet: Comprehensive Support for Graphical, Highly Interactive User Interfaces. IEEE
Computer, 23(11):71-85, November 1990.

[24] J. K. Ousterhout. TCL: An Embedded Command Language. Computer Science Division (EECS), University
of California, Berkeley, CA, January, 1990.

[25] J. M. Purtilo. The Polylith Software Bus. ACM Transactions on Programming Languages and Systems,
16(1):151-174, 1994.

[26] Robert W. Scheifler and Jim Gettys. The X Window System. Technical Report MIT/LCS/TR-368, MIT Lab-
oratory for Computer Science, October 1986.

[27] David L. Tennenhouse, et. al. A Software-Oriented Approach to the Design of Media Processing Environ-
ments. In Proceedings of the International Conference on Multimedia Computing Systems, pp. 435-444,
Boston MA, May 1994.

